
Fuzz Testing

State-of-the-Art

and

Application to Software for IoT

Bengt Jonsson Konstantinos Sagonas Nicolas Tsiftes
Uppsala Univ.       Uppsala Univ.                 RISE 
bengt@it.uu.se kostis@it.uu.se nicolas.tsiftes@rise.se

mailto:bengt@it.uu.se
mailto:kostis@it.uu.se
mailto:nicolas.tsiftes@rise.se


Overview of aSSIsT: Software Security for IoT

Fuzz Testing: Overview

Fuzz Testing: Experiences from application to IoT Software

Outline



aSSIsT

Software Security for the IoT

very short overview



aSSIsT: Software Security for the IoT

2022-11-21

Internet of Things (IoT):

 Primary concern: Security

Focus of aSSIsT:

 Security of IoT Software
• in platforms, communications, applications.

Challenges:

 Large attack surface
• Internet, Wireless, Physical

 Resource-constrained platforms
 Lack of support (memory protection, intrusion detection, …)

Background and Motivation



aSSIsT: Software Security for the IoT

2022-11-21

Participating Groups

aSSIsT: Secure Software for IoT

Project duration: 2018-2024,         https://assist-project.github.io

Funding: Swedish Foundation for Strategic Research (SSF)

Uppsala University, Dept. IT
Senior:     Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Sandip Ghosal, Rémi Parrot
PhD:        Hooman Asadian, Sarbojit Das, Magnus Lång, Fredrik Tåkvist

RISE CS, Kista
Senior:     Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Chetna Singhal
Ph.D:       Anum Khurshid

Reference Group
ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra

https://assist-project.github.io/


aSSIsT: Software Security for the IoT

2022-11-21

Goals:

Demonstrators: 

1. Detecting software vulnerabilities 

• Software analysis, fuzzing

2. Testing and verification of (security) protocol implementations

• Conformance testing, security testing

3. Run-time protection mechanisms

 Trusted execution environments

 Low-power intermittent computing

aSSIsT: Overall Goals

• IoT OS: Contiki-NG 

• IoT protocols:  DTLS (Datagram TLS),  

Challenge: Develop techniques to make IoT software resilient against security attacks, for 
use by developers of Software for IoT



aSSIsT: Software Security for the IoT

2022-11-21

Detect bugs and vulnerabilities using

Fuzzing (or fuzz testing)

fast software testing based on random inputs

Stateless Model Checking

for finding concurrency errors

Software Analysis for IoT Software



aSSIsT: Software Security for the IoT

2022-11-21

Testing of Security Protocols Implementations

DTLS Server

Connection Establishment in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 1:

Correct ordering of packets received and sent

 E.g., can authentication be bypassed?

Solution:

State Fuzzing

 Systematic application of constructed input sequences 

 Automated detection of packet ordering errors

 Applied to DTLS, SSH, TCP



aSSIsT: Software Security for the IoT

2022-11-21

Testing of Security Protocols Implementations

Packet structure in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 2:

Correctness of packet data

 E.g., is correctness of size fields in input packets checked?

• Insufficient checks cause overreads/overwrites (cf. Heartbleed) 

Solution:

Symbolic Execution 

 Covers all values of data fields in input packets

 Detects insufficient checking of packet contents, and 
incorrect data in output 

 Applied to DTLS

TLS server

DTLS Server



aSSIsT: Software Security for the IoT

2022-11-21

Fixes of bugs and vulnerabilities found in fuzzing research:

• For Contiki-NG:
• 18 bug fixes and 11 CVEs

• First continuous integration test suite for Contiki-NG which directly targets security

• For DTLS implementations:
• 30+ bug fixes and 3 CVEs

• In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

• For QUIC implementations: 3 bug fixes

Open-source software tools:

• DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations

• PropEr: Property-based testing, now also for network protocols

• Nidhugg:       Finding concurrency errors in concurrent C code

Impact on Existing IoT Software



aSSIsT: Software Security for the IoT

2022-11-21

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software functionality

 Secure boot, digital signatures, authentication, firmware update

 Memory and peripherals partitioned into secure and normal world

 ARM supports TEE security extension in microcontrollers: TrustZone-M

Trusted 
AppTrusted 

App

Normal 
AppNormal 

AppNormal 
App

Secure World Normal World

Secure Memory Normal Memory

Peripherals



aSSIsT: Software Security for the IoT

2022-11-21

We have addressed several challenges:

1. Authenticating communication requests from normal to secure world

• ShieLD: Lightweight message protection scheme ensuring confidentiality and integrity, 
does not rely on encryption

2. Detecting if a secure application is compromised

• TEE-watchdog: Mitigation of unauthorized activity in TEE

3. Remote attestation and Software-state certification of IoT devices

• AutoCert: Combines Software-state certification and PKI

4. Supporting TEEs in Contiki-NG

• Work in progress

Trusted Execution Environments (TEE)



aSSIsT: Software Security for the IoT

2022-11-21

Securing Intermittent Computing

CHARGING RUNNING

E
N

E
R
G

Y

TIME

STARTUP 
THRESHOLD

OPERATING 
THRESHOLD

Shutdown! Reboot!

Energy
Harvesting



aSSIsT: Software Security for the IoT

2022-11-21

 Problem: Securing persistent state

• Results: Comparing different schemes

 Problem: Energy attacks
• How to detect the attacker is messing with the source?

• How to mitigate the effects?

 Findings:

• Energy attacks may cause priority inversion, 
livelocks,  and unwanted synchronization

 Outcomes: 

• A monitoring system with 95%+ 
accuracy and little overhead

• A mitigation architecture to let 
programmers deal with it

Intermittent Computing: Results



aSSIsT: Software Security for the IoT

2022-11-21

Software analysis

 Test effectiveness of fuzzing techniques on other IoT software

 Fuzzing IoT software on target platforms

• E.g., by supplying fuzzing infrastructure on emulation platforms 

Testing of protocol implementations

 Applying test techniques to other IoT protocols 

• Include EDHOC, OSCORE, QUIC

TEEs

 Realization on open-source hardware

Intermittent computing

 Low-power reconfigurable hardware

Opportunities for Future Work and Collaboration



  

Fuzz Testing (Fuzzing)
An Introduction

Kostis Sagonas

kostis@it.uu.se



  

Dynamic Program Analysis

• Run program in instrumented execution environment
– Static instrumentation
– Binary translator
– Emulator

•  Look for bad stuff
– Assertion violations
– Exceptions (e.g., null pointer dereferences)
– Use of invalid (out of bounds, freed, etc.) memory
– Undefined behavior (e.g., arithmetic overflows)
– etc.



  

Regression vs. Fuzzing

Regression: Run program on many “expected” 
inputs, look whether bugs were introduced.

Goal: Check that normal program uses are OK.

Fuzzing: Run program on many unexpected 
“random” inputs, look for errors.

Goal: Prevent attackers from encountering 
exploitable errors.



  

Fuzzing Basics
• Automatically generate test cases

– typically given some valid inputs as “seeds”.
• Many slightly anomalous test cases are input 

into a target interface.
• Application is monitored for errors.



  

Fuzzing Example

• Standard HTTP GET request
GET /index.html HTTP/1.1

• Anomalous requests generated by fuzzing
AAAAAA...AAAA /index.html HTTP/1.1

GET ///////index.html HTTP/1.1

GET %n%n%n%n%n%n.html HTTP/1.1

GET /AAAAAAAAAAAAA.html HTTP/1.1

GET /index.html HTTTTTTTTTTTTTP/1.1

GET /index.html HTTP/1.1.1.1.1.1.1.1



  

How To Generate Inputs?

• Mutation Based
• Generation Based

– e.g., Grammar-Based Fuzzing
• Feedback Based

– e.g., Coverage-Guided Fuzzing
• Hybrid Fuzzing

– e.g., Fuzzing Guided by Symbolic Execution



  

Mutation-Based Fuzzing

• Little or no knowledge of the structure of the 
inputs is assumed.

• Anomalies are added to existing valid inputs.

• Mutations may be completely random or follow 
some heuristics (e.g., remove a bit, add a byte, 
flip two characters, etc.).



  

Example: Fuzzing a pdf Viewer

• Google for .pdf (about 1 billion results)

• Crawl pages to build a corpus 
• Use fuzzing tool (or script to)

1. Grab a file
2. Mutate that file
3. Feed it to the program
4. Record if the program crashed/hanged/etc.

(and remember the input that crashed it)



  

Mutation-Based Fuzzing

• Strengths
– Super easy to setup and automate
– Little to no program knowledge required

• Weaknesses
– Limited by initial corpus
– May fail for protocols with checksums, those which depend 

on challenge response, etc.



  

Generation-Based Fuzzing

• Test cases are generated from some 
description of the format: protocol RFC, 
documentation, etc.

• Anomalies are added to each possible 
spot in the inputs.

• Knowledge of protocol should give better 
results than random fuzzing.



  

Generation-Based Fuzzing

• Strengths
– Completeness
– Can deal with complex dependencies e.g. checksums

• Weaknesses
– Have to have spec of protocol

• Often can find good tools for some protocols e.g. http, SNMP

– Writing generator can be labor intensive for complex 
protocols

– The spec is not the code



  

How Much Fuzz Is Enough?

• Mutation-based fuzzers can generate an 
infinite number of test cases…

– When has the fuzzer run long enough?
• Generation-based fuzzers generate a finite 

number of test cases.
– What happens when they’re all run and no 

bugs are found?



  

Code Coverage

• Some of the answers to these questions lie in 
code coverage.

• Code coverage is a metric which can be used 
to determine how much code has been 
executed.

• Data can be obtained using a variety of 
profiling tools (e.g., gcov).



  

Types of Code Coverage

• Line coverage
– Measures how many lines of source code 

have been executed.
• Branch coverage

– Measures how many branches in code have 
been taken (conditional jumps)

• Path coverage
– Measures how many paths have been taken



  

Example

Requires: 
– 1 test case for line coverage
– 2 test cases for branch coverage

– 4 test cases for path coverage
(a,b) = {(0,0), (3,0), (0,3), (3,3)}



  

Fuzzing Rules of Thumb

• More fuzzers is better
– Different fuzzers often find different bugs.

• The longer you run, the more bugs you find.
• Best results come from guiding the process.
• Code coverage can be very useful for guiding 

the process.



  

Grey-box Fuzzing
• Select mutations based on fitness metrics
• Prefer mutations that give

– Better code coverage
– Modify inputs to potentially dangerous functions 

(e.g. memcpy)



Fuzzing IoT Software 

Technical Overview 

2022-11-21 Nicolas Tsiftes, RISE 1 



Setting Up Fuzzing 

• Create a fuzzing harness 

– Passes input data from fuzzer to target app 

– Typically a small module or shell script 

• Generate or collect a test seed 

– Example 1: pre-recorded protocol message 
sessions for fuzzing a protocol implementation 

– Example 2: different types of binaries when 
fuzzing a dynamic loader 

2022-11-21 2 Nicolas Tsiftes, RISE 



Fuzzing Output 

• Input data leading to new code execution 
paths in the target application 

• Input data causing crashes or hangs 

– Re-run application with GDB or Valgrind to debug 

2022-11-21 3 Nicolas Tsiftes, RISE 



Detecting Vulnerabilities 

• Crashes 
– E.g., out-of-bounds memory accesses, NULL 

pointer dereferences 

• Hangs 
– E.g., infinite loops, thread deadlocks 

– Set fuzzer timeout depending on target app 

• Enhanced bug detection with sanitizers 
– E.g., undefined behavior not causing a crash 

– Address Sanitizer, Undefined Behavior Sanitizer 

2022-11-21 4 Nicolas Tsiftes, RISE 



Fuzzing in Atypical Environments 

• Challenges 
– Many state-of-the-art fuzzers require Linux env. 
– Fuzz software on IoT devices? 
– No access to source code 

• Solutions 
– Emulator-based fuzzing of binaries 

• AFL QEMU mode 

– Adapted fuzzing target setup 
• Run IoT OS as a Linux application 

– Specialized tools 
• FIRM-AFL, IoTFuzzer 

 

2022-11-21 5 Nicolas Tsiftes, RISE 



Experiences with Contiki-NG 

• OS for resource-constrained IoT devices 

– Open-source development 

– Used in research and industry 

• Low-power IPv6 stack 

IPv6 

6LoWPAN 

ICMPv6 

LwM2M 

CoAP 

RPL 

UDP / DTLS 

MQTT 

TCP 

Adaptation layer 

IEEE 
802.15.4 

Bluetooth 
Low Energy 

Network layer 

MAC layer 

Transport layer 

Application layer 

Fuzzing 
tool 

Mutated input data 

2022-11-21 6 Nicolas Tsiftes, RISE 



Contiki-NG Network Stack Fuzzing 

• Multiple protocol layers 

• Must pass many field validity checks to reach 
upper layers 

– 6LoWPAN     IPv6     UDP     CoAP     LwM2M 

• Alternative entry points for fuzzed input packets 

– 6LoWPAN, IPv6, CoAP, DNS resolver 

 

 Which fuzzing method is most effective when applied 
on a codebase of Contiki-NG’s characteristics? 

2022-11-21 7 Nicolas Tsiftes, RISE 


