Fuzz Testing

State-of-the-Art
and
Application to Software for loT

Bengt Jonsson Konstantinos Sagonas Nicolas Tsiftes
Uppsala Univ. Uppsala Univ. RISE
bengt@it.uu.se kostis@it.uu.se nicolas.tsiftes@rise.se

mailto:bengt@it.uu.se
mailto:kostis@it.uu.se
mailto:nicolas.tsiftes@rise.se

Outline

Overview of aSSIsT: Software Security for IoT
Fuzz Testing: Overview

Fuzz Testing: Experiences from application to IoT Software

aSSIsT

Software Security for the IoT

very short overview

PPPPPPP

aSSIsT: Software Security for the IoT

Background and Motivation

Internet of Things (IoT):
= Primary concern: Security
Focus of aSSIsT:

= Security of IoT Software
e in platforms, communications, applications.

Challenges:

= Large attack surface
o Internet, Wireless, Physical

= Resource-constrained platforms
— Lack of support (memory protection, intrusion detection, ...)

_ ey
T T Y Y
- BRI fsy
- _g WL
UPPSALA S E

UNIVERSITET 2022-11-21

(o
UPPSALA
UNIVERSITET

aSSIsT: Software Security for the IoT

aSSIsT: secure Software for IoT

Project duration: 2018-2024, https://assist-project.github.io
Funding: Swedish Foundation for Strategic Research (SSF)

Pa rti_cipating Grou PS

Uppsala University, Dept. IT

Senior: Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Sandip Ghosal, Rémi Parrot

PhD: Hooman Asadian, Sarbojit Das, Magnus Lang, Fredrik Takvist

RISE CS, Kista

Senior: Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Chetna Singhal

Ph.D: Anum Khurshid

Reference Group
ASSA ABLOQY, Intel Sweden, LumenRadio, Upwis, Wittra

2022-11-21

https://assist-project.github.io/

aSSIsT: Software Security for the IoT

aSSIsT: Overall Goals

Challenge: Develop techniques to make IoT software resilient against security attacks, for
use by developers of Software for IoT

Goals:

1. Detecting software vulnerabilities
« Software analysis, fuzzing
2. Testing and verification of (security) protocol implementations
« Conformance testing, security testing
3. Run-time protection mechanisms
= Trusted execution environments
= Low-power intermittent computing
Demonstrators:

« IoT OS: Contiki-NG
« IoT protocols: DTLS (Datagram TLS),

2022-11-21

aSSIsT: Software Security for the IoT

Software Analysis for IoT Software

Detect bugs and vulnerabilities using

Fuzzing (or fuzz testing)
fast software testing based on random inputs

PPPPPPP

aSSIsT: Software Security for the IoT

Testing of Security Protocols Implementations

Challenge:

Connection Establishment in DTLS

Cover all possible sequences of attacker inputs

Challenge 1:

Correct ordering of packets received and sent
= E.g., can authentication be bypassed?

Tester

Solution:
State Fuzzing
Systematic application of constructed input sequences
Automated detection of packet ordering errors
Applied to DTLS, SSH, TCP

SRR,

e ety

e
UPPSALA SE

UNIVERSITET

ClientHello

(>
Se\’\(’:e‘;t\é\ﬁcateReq

Certifjcat,
Clientke
—R€YExch
Cert:ﬂcate\/er,-fye
ChangeCiPhSpec
FiniShed

eC
Ciph=P
n e
cha \?\ n’\S\'\ed

2022-11-21

aSSIsT: Software Security for the IoT

Testing of Security Protocols Implementations

Challenge:
Cover all possible sequences of attacker inputs

Packet structure in DTLS

Challenge 2: Tester

Correctness of packet data DTLS Server

= E.g., is correctness of size fields in input packets checked?

« Insufficient checks cause overreads/overwrites (cf. Heartbleed)<

N

v

A

Solution: {
Symbolic Execution P Erotocolversion client_version;
= Covers all values of data fields in input packets sersionts swionia
= Detects insufficient checking of packet contents, and S P
incorrect data in output e
= Applied to DTLS) T xtension extensions<0..2%16-15;
} ClientHello;

o)

sy
UPPSALA SE
UNIVERSITET 2022-11-21

aSSIsT: Software Security for the IoT

Impact on Existing IoT Software

Fixes of bugs and vulnerabilities found in fuzzing research:

« For Contiki-NG:
e 18 bug fixes and 11 CVEs
e First continuous integration test suite for Contiki-NG which directly targets security

« For DTLS implementations:
e 30+ bug fixes and 3 CVEs
e In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

« For QUIC implementations: 3 bug fixes

Open-source software tools:

« DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations
* PropEr: Property-based testing, now also for network protocols
- Nidhugg: Finding concurrency errors in concurrent C code

wrsan SE

UNIVERSITET

2022-11-21

aSSIsT: Software Security for the IoT

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software functionality
= Secure boot, digital signatures, authentication, firmware update

= Memory and peripherals partitioned into secure and normal world

= ARM supports TEE security extension in microcontrollers: TrustZone-M

TrustZone®

e - - - -y, e - - -y,

\ \
Secure World |‘ Normal World

1

Trusted
App

I
Peripherals

Secure Memory |1;| Normal Memory

By AU U U U ————

2022-11-21

aSSIsT: Software Security for the IoT

Trusted Execution Environments (TEE)

We have addressed several challenges:

1.

(&5 -r,'_}t.'}-;

ey
UPPSALA
UNIVERSITET

Authenticating communication requests from normal to secure world

e ShielLD: Lightweight message protection scheme ensuring confidentiality and integrity,
does not rely on encryption

Detecting if a secure application is compromised
e TEE-watchdog: Mitigation of unauthorized activity in TEE

Remote attestation and Software-state certification of IoT devices
e AutoCert: Combines Software-state certification and PKI

Supporting TEEs in Contiki-NG
e Work in progress

RI
SE

2022-11-21

[Pentis]
e
UPPSALA
UNIVERSITET

Securing Intermittent Computing

STARTUP
THRESHOLD

OPERATING
THRESHOLD

TIME

aSSIsT: Software Security for the IoT

A\

Shutdown!

Reboot!

ENERGY

2022-11-21

aSSIsT: Software Security for the IoT

Intermittent Computing: Results

Problem: Securing persistent state
e Results: Comparing different schemes ‘
Problem: Energy attacks o
e How to detect the attacker is messing with the source? S
e How to mitigate the effects?
= Findings:
e Energy attacks may cause priority inversion,
livelocks, and unwanted synchronization
= Outcomes:

e A monitoring system with 95%+
accuracy and little overhead

e A mitigation architecture to let
programmers deal with it

S,
& RI
(5
\‘i\%g:‘f
UPPSALA SE

UNIVERSITET

2022-11-21

aSSIsT: Software Security for the IoT

Opportunities for Future Work and Collaboration

Software analysis
= Test effectiveness of fuzzing techniques on other IoT software

= Fuzzing IoT software on target platforms
e E.g., by supplying fuzzing infrastructure on emulation platforms

Testing of protocol implementations

= Applying test techniques to other IoT protocols
e Include EDHOC, OSCORE, QUIC

TEEs

= Realization on open-source hardware
Intermittent computing

= Low-power reconfigurable hardware

Fuzz Testing (Fuzzing)
An Introduction

Kostis Sagonas
kostis@it.uu.se

Dynamic Program Analysis

* Run program in instrumented execution environment
— Static instrumentation
— Binary translator
— Emulator

* Look for bad stuff

— Assertion violations

— Exceptions (e.g., null pointer dereferences)

— Use of invalid (out of bounds, freed, etc.) memory
— Undefined behavior (e.g., arithmetic overflows)

— efc.

Regression vs. Fuzzing

7

Regression: Run program on many “expected
iInputs, look whether bugs were introduced.

Goal: Check that normal program uses are OK.

Fuzzing: Run program on many unexpected
“‘random” inputs, look for errors.

Goal: Prevent attackers from encountering
exploitable errors.

Fuzzing Basics

« Automatically generate test cases

— typically given some valid inputs as “seeds”.

* Many slightly anomalous test cases are input
into a target interface.

* Application is monitored for errors.

Fuzzing Example

« Standard HTTP GET request

GET /index.html HTTP/1.1

* Anomalous requests generated by fuzzing
AAAAAA. . .AAAA /index.html HTTP/1.1
GET ///////index.html HTTP/1.1
GET %n%n%n%n%n%n.html HTTP/1.1
GET /AAAAAAAAAAAAA .html HTTP/1.1
GET /index.html HTTTTTTTTTTTTTP/1.1
GET /index.html HTTP/1.1.1.1.1.1.1.1

How To Generate Inputs?

Mutation Based

Generation Based

— e.g., Grammar-Based Fuzzing

Feedback Based

—e.g., Coverage-Guided Fuzzing

Hybrid Fuzzing

—e.g., Fuzzing Guided by Symbolic Execution

Mutation-Based Fuzzing

* Little or no knowledge of the structure of the
Inputs is assumed.

 Anomalies are added to existing valid inputs.

* Mutations may be completely random or follow
some heuiristics (e.g., remove a bit, add a byte,
flip two characters, etc.).

Example: Fuzzing a pdf Viewer

* Google for .pdf (about 1 billion results)
* Crawl pages to build a corpus
* Use fuzzing tool (or script to)

1. Grab afile

2. Mutate that file

3. Feed it to the program

4,

Record if the program crashed/hanged/etc.
(and remember the input that crashed it)

Mutation-Based Fuzzing

* Strengths
— Super easy to setup and automate
— Little to no program knowledge required

* \Weaknesses
— Limited by initial corpus

— May fail for protocols with checksums, those which depend
on challenge response, etc.

Generation-Based Fuzzing

* Test cases are generated from some
description of the format: protocol RFC,
documentation, etc.

* Anomalies are added to each possible
spot in the inputs.

* Knowledge of protocol should give better
results than random fuzzing.

Generation-Based Fuzzing

* Strengths
— Completeness
— Can deal with complex dependencies e.g. checksums

 \WWeaknesses

— Have to have spec of protocol
» Often can find good tools for some protocols e.g. http, SNMP

— Writing generator can be labor intensive for complex
protocols

— The spec is not the code

How Much Fuzz Is Enough??

* Mutation-based fuzzers can generate an
infinite number of test cases...

— When has the fuzzer run long enough?

* Generation-based fuzzers generate a finite
number of test cases.

— What happens when they're all run and no
bugs are found?

Code Coverage

* Some of the answers to these questions lie in
code coverage.

* Code coverage is a metric which can be used
to determine how much code has been
executed.

* Data can be obtained using a variety of
profiling tools (e.g., gcov).

Types of Code Coverage

* Line coverage

— Measures how many lines of source code
have been executed.

* Branch coverage

— Measures how many branches in code have
been taken (conditional jumps)

« Path coverage
— Measures how many paths have been taken

Example

if (a > 1) x
if (b > 1) y

i
[

Requires:
— 1 test case for line coverage
— 2 test cases for branch coverage

— 4 test cases for path coverage
(a,b) = {(OIO)I (310)/ (013)1 (313)}

Fuzzing Rules of Thumb

More fuzzers is better

— Different fuzzers often find different bugs.
The longer you run, the more bugs you find.
Best results come from guiding the process.

Code coverage can be very useful for guiding
the process.

Grey-box Fuzzing

* Select mutations based on fithess metrics

* Prefer mutations that give
— Better code coverage

— Modify inputs to potentially dangerous functions
(e.g. memcpy)

If_ln)ﬂ

2022-11-21

Fuzzing loT Software

Technical Overview

Nicolas Tsiftes, RISE

UNIVERSITET

Setting Up Fuzzing

* Create a fuzzing harness
— Passes input data from fuzzer to target app
— Typically a small module or shell script

e Generate or collect a test seed

. pre-recorded protocol message
sessions for fuzzing a protocol implementation

. different types of binaries when
fuzzing a dynamic loader

Fuzzing Output

* |[nput data leading to new code execution

paths in the target application

* |[nput data causing crashes or hangs

— Re-run application with GDB or Valgrind to debug

ANGORA
FUZZER

TIMING
COVERAGE
EXECS
SPEED
FOUND

EXPLORE
EXPLOIT
CHPFH
LEN

AFL
OTHER

SEARCH
UNDESIR
ONEBYTE

INCONSIS

(5N_7)
(="'

RUN: [00:10:551,
990.88,
TOTAL: 396.44k,
605.26r/s
871,

EDGE:

PERIOD:
PATH:

CONDS :
CONDS :
CONDS :
CONDS :
CONDS :
CONDS :

27,
1

CMP: 1426

CMP:

99

CMP: 285

CMP:

NORMAL :

DET:

1]

29,
6?7,
20,

o,

EXEC:
EXEC:

TRACK:

DENSITY:
ROUND :

TIME: 1326.91us,
HANGS :

EXEC:
EXEC:
EXEC:
EXEC:

22
9
2

61,
01,
85,

o,

1467d -

0d

295.45k,
100.31k,

20,
12,
o,
b4z,

BOOL:
BOOL:
BOOL:
BOOL:

[00:0
0.5
839

TIME:
TIME:
TIME:
TIME:
TIME:
TIME:

79p. N

1p,
Nicolas Tsiftes, RISE

0:061
liv4
EN MAX_R:

0,(_ CRASHES:

[00:08:071,
[00:02:471,
[00:00:00],
[00:00:001,
[00:00:001,
[00:00:021,

45,
45,
3.
o,

4 7/
4 7/
3/
0/

DRMAL_END :

TIMEOUT :

FOUND :
FOUND :
FOUND :
FOUND :
FOUND :
FOUND :

SW:
SW:
SW:
SW:

0d

0d -

423
136
28
0}

Op, ONE_BYTE:

UNSOLVABLE :

Detecting Vulnerabilities

 Crashes

— E.g., out-of-bounds memory accesses, NULL
pointer dereferences

* Hangs
— E.g., infinite loops, thread deadlocks
— Set fuzzer timeout depending on target app

* Enhanced bug detection with sanitizers
— E.g., undefined behavior not causing a crash
— Address Sanitizer, Undefined Behavior Sanitizer

Fuzzing in Atypical Environments

* Challenges
— Many state-of-the-art fuzzers require Linux env.
— Fuzz software on loT devices?
— No access to source code

* Solutions
— Emulator-based fuzzing of binaries
 AFL QEMU mode

— Adapted fuzzing target setup
* Run loT OS as a Linux application

— Specialized tools
* FIRM-AFL, loTFuzzer

Experiences with Contiki-NG

e OS for resource-constrained loT devices

— Open-source development

— Used in research and industry

* Low-power IPv6 stack

Fuzzing Mutated input data
tool

2022-11-21

UDP / DTLS

TCP

RPL
ICMPv6

IPv6

6LoWPAN

IEEE
802.15.4

Bluetooth
Low Energy

Nicolas Tsiftes, RISE

CONTIKI

NEXT GENERATION

- Application layer

~ Transport layer
~ Network layer

- Adaptation layer

- MAC layer

Contiki-NG Network Stack Fuzzing

 Multiple protocol layers

 Must pass many field validity checks to reach
upper layers
— 6LOWPAN — [Pv6— UDP— CoAP— LWM2M

* Alternative entry points for fuzzed input packets
— 6LoWPAN, IPv6, CoAP, DNS resolver

Which fuzzing method is most effective when applied
on a codebase of Contiki-NG’s characteristics?

2022-11-21 Nicolas Tsiftes, RISE

