
Fuzz Testing

State-of-the-Art

and

Application to Software for IoT

Bengt Jonsson Konstantinos Sagonas Nicolas Tsiftes
Uppsala Univ. Uppsala Univ. RISE
bengt@it.uu.se kostis@it.uu.se nicolas.tsiftes@rise.se

mailto:bengt@it.uu.se
mailto:kostis@it.uu.se
mailto:nicolas.tsiftes@rise.se

Overview of aSSIsT: Software Security for IoT

Fuzz Testing: Overview

Fuzz Testing: Experiences from application to IoT Software

Outline

aSSIsT

Software Security for the IoT

very short overview

aSSIsT: Software Security for the IoT

2022-11-21

Internet of Things (IoT):

 Primary concern: Security

Focus of aSSIsT:

 Security of IoT Software
• in platforms, communications, applications.

Challenges:

 Large attack surface
• Internet, Wireless, Physical

 Resource-constrained platforms
 Lack of support (memory protection, intrusion detection, …)

Background and Motivation

aSSIsT: Software Security for the IoT

2022-11-21

Participating Groups

aSSIsT: Secure Software for IoT

Project duration: 2018-2024, https://assist-project.github.io

Funding: Swedish Foundation for Strategic Research (SSF)

Uppsala University, Dept. IT
Senior: Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Sandip Ghosal, Rémi Parrot
PhD: Hooman Asadian, Sarbojit Das, Magnus Lång, Fredrik Tåkvist

RISE CS, Kista
Senior: Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Chetna Singhal
Ph.D: Anum Khurshid

Reference Group
ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra

https://assist-project.github.io/

aSSIsT: Software Security for the IoT

2022-11-21

Goals:

Demonstrators:

1. Detecting software vulnerabilities

• Software analysis, fuzzing

2. Testing and verification of (security) protocol implementations

• Conformance testing, security testing

3. Run-time protection mechanisms

 Trusted execution environments

 Low-power intermittent computing

aSSIsT: Overall Goals

• IoT OS: Contiki-NG

• IoT protocols: DTLS (Datagram TLS),

Challenge: Develop techniques to make IoT software resilient against security attacks, for
use by developers of Software for IoT

aSSIsT: Software Security for the IoT

2022-11-21

Detect bugs and vulnerabilities using

Fuzzing (or fuzz testing)

fast software testing based on random inputs

Stateless Model Checking

for finding concurrency errors

Software Analysis for IoT Software

aSSIsT: Software Security for the IoT

2022-11-21

Testing of Security Protocols Implementations

DTLS Server

Connection Establishment in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 1:

Correct ordering of packets received and sent

 E.g., can authentication be bypassed?

Solution:

State Fuzzing

 Systematic application of constructed input sequences

 Automated detection of packet ordering errors

 Applied to DTLS, SSH, TCP

aSSIsT: Software Security for the IoT

2022-11-21

Testing of Security Protocols Implementations

Packet structure in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 2:

Correctness of packet data

 E.g., is correctness of size fields in input packets checked?

• Insufficient checks cause overreads/overwrites (cf. Heartbleed)

Solution:

Symbolic Execution

 Covers all values of data fields in input packets

 Detects insufficient checking of packet contents, and
incorrect data in output

 Applied to DTLS

TLS server

DTLS Server

aSSIsT: Software Security for the IoT

2022-11-21

Fixes of bugs and vulnerabilities found in fuzzing research:

• For Contiki-NG:
• 18 bug fixes and 11 CVEs

• First continuous integration test suite for Contiki-NG which directly targets security

• For DTLS implementations:
• 30+ bug fixes and 3 CVEs

• In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

• For QUIC implementations: 3 bug fixes

Open-source software tools:

• DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations

• PropEr: Property-based testing, now also for network protocols

• Nidhugg: Finding concurrency errors in concurrent C code

Impact on Existing IoT Software

aSSIsT: Software Security for the IoT

2022-11-21

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software functionality

 Secure boot, digital signatures, authentication, firmware update

 Memory and peripherals partitioned into secure and normal world

 ARM supports TEE security extension in microcontrollers: TrustZone-M

Trusted
AppTrusted

App

Normal
AppNormal

AppNormal
App

Secure World Normal World

Secure Memory Normal Memory

Peripherals

aSSIsT: Software Security for the IoT

2022-11-21

We have addressed several challenges:

1. Authenticating communication requests from normal to secure world

• ShieLD: Lightweight message protection scheme ensuring confidentiality and integrity,
does not rely on encryption

2. Detecting if a secure application is compromised

• TEE-watchdog: Mitigation of unauthorized activity in TEE

3. Remote attestation and Software-state certification of IoT devices

• AutoCert: Combines Software-state certification and PKI

4. Supporting TEEs in Contiki-NG

• Work in progress

Trusted Execution Environments (TEE)

aSSIsT: Software Security for the IoT

2022-11-21

Securing Intermittent Computing

CHARGING RUNNING

E
N

E
R
G

Y

TIME

STARTUP
THRESHOLD

OPERATING
THRESHOLD

Shutdown! Reboot!

Energy
Harvesting

aSSIsT: Software Security for the IoT

2022-11-21

 Problem: Securing persistent state

• Results: Comparing different schemes

 Problem: Energy attacks
• How to detect the attacker is messing with the source?

• How to mitigate the effects?

 Findings:

• Energy attacks may cause priority inversion,
livelocks, and unwanted synchronization

 Outcomes:

• A monitoring system with 95%+
accuracy and little overhead

• A mitigation architecture to let
programmers deal with it

Intermittent Computing: Results

aSSIsT: Software Security for the IoT

2022-11-21

Software analysis

 Test effectiveness of fuzzing techniques on other IoT software

 Fuzzing IoT software on target platforms

• E.g., by supplying fuzzing infrastructure on emulation platforms

Testing of protocol implementations

 Applying test techniques to other IoT protocols

• Include EDHOC, OSCORE, QUIC

TEEs

 Realization on open-source hardware

Intermittent computing

 Low-power reconfigurable hardware

Opportunities for Future Work and Collaboration

Fuzz Testing (Fuzzing)
An Introduction

Kostis Sagonas

kostis@it.uu.se

Dynamic Program Analysis

• Run program in instrumented execution environment
– Static instrumentation
– Binary translator
– Emulator

• Look for bad stuff
– Assertion violations
– Exceptions (e.g., null pointer dereferences)
– Use of invalid (out of bounds, freed, etc.) memory
– Undefined behavior (e.g., arithmetic overflows)
– etc.

Regression vs. Fuzzing

Regression: Run program on many “expected”
inputs, look whether bugs were introduced.

Goal: Check that normal program uses are OK.

Fuzzing: Run program on many unexpected
“random” inputs, look for errors.

Goal: Prevent attackers from encountering
exploitable errors.

Fuzzing Basics
• Automatically generate test cases

– typically given some valid inputs as “seeds”.
• Many slightly anomalous test cases are input

into a target interface.
• Application is monitored for errors.

Fuzzing Example

• Standard HTTP GET request
GET /index.html HTTP/1.1

• Anomalous requests generated by fuzzing
AAAAAA...AAAA /index.html HTTP/1.1

GET ///////index.html HTTP/1.1

GET %n%n%n%n%n%n.html HTTP/1.1

GET /AAAAAAAAAAAAA.html HTTP/1.1

GET /index.html HTTTTTTTTTTTTTP/1.1

GET /index.html HTTP/1.1.1.1.1.1.1.1

How To Generate Inputs?

• Mutation Based
• Generation Based

– e.g., Grammar-Based Fuzzing
• Feedback Based

– e.g., Coverage-Guided Fuzzing
• Hybrid Fuzzing

– e.g., Fuzzing Guided by Symbolic Execution

Mutation-Based Fuzzing

• Little or no knowledge of the structure of the
inputs is assumed.

• Anomalies are added to existing valid inputs.

• Mutations may be completely random or follow
some heuristics (e.g., remove a bit, add a byte,
flip two characters, etc.).

Example: Fuzzing a pdf Viewer

• Google for .pdf (about 1 billion results)

• Crawl pages to build a corpus
• Use fuzzing tool (or script to)

1. Grab a file
2. Mutate that file
3. Feed it to the program
4. Record if the program crashed/hanged/etc.

(and remember the input that crashed it)

Mutation-Based Fuzzing

• Strengths
– Super easy to setup and automate
– Little to no program knowledge required

• Weaknesses
– Limited by initial corpus
– May fail for protocols with checksums, those which depend

on challenge response, etc.

Generation-Based Fuzzing

• Test cases are generated from some
description of the format: protocol RFC,
documentation, etc.

• Anomalies are added to each possible
spot in the inputs.

• Knowledge of protocol should give better
results than random fuzzing.

Generation-Based Fuzzing

• Strengths
– Completeness
– Can deal with complex dependencies e.g. checksums

• Weaknesses
– Have to have spec of protocol

• Often can find good tools for some protocols e.g. http, SNMP

– Writing generator can be labor intensive for complex
protocols

– The spec is not the code

How Much Fuzz Is Enough?

• Mutation-based fuzzers can generate an
infinite number of test cases…

– When has the fuzzer run long enough?
• Generation-based fuzzers generate a finite

number of test cases.
– What happens when they’re all run and no

bugs are found?

Code Coverage

• Some of the answers to these questions lie in
code coverage.

• Code coverage is a metric which can be used
to determine how much code has been
executed.

• Data can be obtained using a variety of
profiling tools (e.g., gcov).

Types of Code Coverage

• Line coverage
– Measures how many lines of source code

have been executed.
• Branch coverage

– Measures how many branches in code have
been taken (conditional jumps)

• Path coverage
– Measures how many paths have been taken

Example

Requires:
– 1 test case for line coverage
– 2 test cases for branch coverage

– 4 test cases for path coverage
(a,b) = {(0,0), (3,0), (0,3), (3,3)}

Fuzzing Rules of Thumb

• More fuzzers is better
– Different fuzzers often find different bugs.

• The longer you run, the more bugs you find.
• Best results come from guiding the process.
• Code coverage can be very useful for guiding

the process.

Grey-box Fuzzing
• Select mutations based on fitness metrics
• Prefer mutations that give

– Better code coverage
– Modify inputs to potentially dangerous functions

(e.g. memcpy)

Fuzzing IoT Software

Technical Overview

2022-11-21 Nicolas Tsiftes, RISE 1

Setting Up Fuzzing

• Create a fuzzing harness

– Passes input data from fuzzer to target app

– Typically a small module or shell script

• Generate or collect a test seed

– Example 1: pre-recorded protocol message
sessions for fuzzing a protocol implementation

– Example 2: different types of binaries when
fuzzing a dynamic loader

2022-11-21 2 Nicolas Tsiftes, RISE

Fuzzing Output

• Input data leading to new code execution
paths in the target application

• Input data causing crashes or hangs

– Re-run application with GDB or Valgrind to debug

2022-11-21 3 Nicolas Tsiftes, RISE

Detecting Vulnerabilities

• Crashes
– E.g., out-of-bounds memory accesses, NULL

pointer dereferences

• Hangs
– E.g., infinite loops, thread deadlocks

– Set fuzzer timeout depending on target app

• Enhanced bug detection with sanitizers
– E.g., undefined behavior not causing a crash

– Address Sanitizer, Undefined Behavior Sanitizer

2022-11-21 4 Nicolas Tsiftes, RISE

Fuzzing in Atypical Environments

• Challenges
– Many state-of-the-art fuzzers require Linux env.
– Fuzz software on IoT devices?
– No access to source code

• Solutions
– Emulator-based fuzzing of binaries

• AFL QEMU mode

– Adapted fuzzing target setup
• Run IoT OS as a Linux application

– Specialized tools
• FIRM-AFL, IoTFuzzer

2022-11-21 5 Nicolas Tsiftes, RISE

Experiences with Contiki-NG

• OS for resource-constrained IoT devices

– Open-source development

– Used in research and industry

• Low-power IPv6 stack

IPv6

6LoWPAN

ICMPv6

LwM2M

CoAP

RPL

UDP / DTLS

MQTT

TCP

Adaptation layer

IEEE
802.15.4

Bluetooth
Low Energy

Network layer

MAC layer

Transport layer

Application layer

Fuzzing
tool

Mutated input data

2022-11-21 6 Nicolas Tsiftes, RISE

Contiki-NG Network Stack Fuzzing

• Multiple protocol layers

• Must pass many field validity checks to reach
upper layers

– 6LoWPAN IPv6 UDP CoAP LwM2M

• Alternative entry points for fuzzed input packets

– 6LoWPAN, IPv6, CoAP, DNS resolver

 Which fuzzing method is most effective when applied
on a codebase of Contiki-NG’s characteristics?

2022-11-21 7 Nicolas Tsiftes, RISE

