aSSIsT

Software Security for the IoT

Bengt Jonsson Luca Mottola
Shahid Raza Konstantinos Sagonas




aSSIsT: Software Security for the IoT

Background and Motivation

Internet of Things (IoT):
= Primary concern: Security
Focus of aSSIsT:

= Security of IoT Software
e in platforms, communications, applications.

Challenges:

= Large attack surface
o Internet, Wireless, Physical

= Resource-constrained platforms
— Lack of support (memory protection, intrusion detection, ...)

2021-12-06



aSSIsT: Software Security for the IoT

Goals and Approach

Overall Goal:

Develop techniques to make IoT software resilient against security attacks,
for use by developers of Software for IoT

Approach:

Advance state-of-the-art in
1. Testing and verification of security protocol implementations
2. Testing and security analysis of IoT software
3. Run-time protection mechanisms
= Trusted execution environments
= Low-power intermittent computing

2021-12-06



aSSIsT: Software Security for the IoT

Consortium

Uppsala University, Dept. IT

Senior:  Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Clement Poncelet

PhD: Hooman Asadian, Sarbojit Das, Magnus Lang, Fredrik Takvist

RISE CS, Kista

Senior:  Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Navid Bhatti, Sileshi Demesie Yalew, Carlos Penichet
Ph.D: Anum Khurshid

Reference Group
ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra

2021-12-06



aSSIsT: Software Security for the IoT

Testing of Security Protocols Implementations

Challenge: Connection Establishment in DTLS
Cover all possible sequences of attacker inputs

%
LoV e'fﬁ‘y"&ec\
Challenge 1: Tester Blewer,

DTLS Server
Correct ordering of packets received and sent

= E.g., can authentication be bypassed?

Solution: N CE\ZC\Z,ZK;%’,
State Fuzzing %
= Systematic application of constructed input sequences e Fienes
=  Automated detection of packet ordering errors
= Applied to DTLS, SSH, TCP

Py RI

UPPSALA

UNIVERSITET 2021-12-06



aSSIsT: Software Security for the IoT

Testing of Security Protocols Implementations

Challenge:
Cover all possible sequences of attacker inputs

Packet structure in DTLS

Challenge 2: Tester

Correctness of packet data DTLS Server

= E.g., is correctness of size fields in input packets checked?

« Insufficient checks cause overreads/overwrites (cf. Heartbleed)<

v

A

< I
Solution: {
Symbolic Execution P Erotocolversion client_version;
= Covers all values of data fields in input packets sersionts swionia
= Detects insufficient checking of packet contents, and S P
incorrect data in output e
= Applied to DTLS ) T xtension extensions<0..2%16-15;
} ClientHello;

UPPSALA S E
UNIVERSITET 2021-12-06



aSSIsT: Software Security for the IoT

Software Analysis for IoT Software

Detect bugs and vulnerabilities using
Fuzzing (or fuzz testing)
fast software testing based on random inputs
Symbolic Execution
slow but effective in exploring most/all program paths
Hybrid Fuzzing
technique that combines the two above

Our target: Contiki-NG
"The OS for Next Generation of IoT Devices” yﬁ

EUZZING




PPPPPPP

Fuzzing the Contiki-NG Network Stack

Created infrastructure to fuzz at different network stack layers

e

Detected and fixed:
« 17 vulnerabilities (in IPv6, 6LoWPAN, ICMPv6, and RPL)

Using 8 state-of-the-art fuzzing tools

- Mutation-based: AFL, AFL-cf, Mopt
 Hybrid: Angora, QSym, Intriguer, SAVIOR, SymCC




aSSIsT: Software Security for the IoT

Impact on Existing IoT Software

Fixes of bugs and vulnerabilities found in fuzzing research:

« For Contiki-NG:
e 17 bug fixes and 6 CVEs
e First continuous integration test suite for Contiki-NG which directly targets security

« For DTLS implementations:
e 17 bug fixes and 3 CVEs
e In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

Open-source software tools:

« DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations
*  PropEr: Property-based testing, now also for network protocols
- Nidhugg: Finding concurrency errors in concurrent C code

2021-12-06



aSSIsT: Software Security for the IoT

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software components

= Partition memory and peripherals into secure and normal processing world
= Secure boot, digital signatures, authentication, firmware update

= ARM supports TEE security extension in microcontrollers: TrustZone-M

TrustZone®
Problems: O et N

\
[ Secure World |‘ Normal World 1

1. Communication charn, —— ormal world is vulnerable
* No way to authenticate ing n the normal to secure world

| .
ompromised

Trusted
2. Impossible to detect: App

. . I
e unauthorized activities wi

I I

I Peripherals

I J|
1| Secure Memory |1;| Normal Memory
I : \ I\

N e e e e o -

2021-12-06



aSSIsT: Software Security for the IoT

Trusted Execution Environments (TEE)

Solutions:

1. ShielLD: Lightweight message protection scheme ensuring confidentiality
and integrity

2. TEE-watchdog: Mitigation of unauthorized activity of applications in TEE
Proof-of-concept implementations on IoT hardware w. TrustZone-M

= Minimal execution overhead

Publications under submission.

Future Work:
= Remote attestation of IoT devices
» Software-state certification of IoT devices




Securing Intermittent Computing

STARTUP
THRESHOLD

OPERATING
THRESHOLD

TIME

aSSIsT: Software Security for the IoT

Shutdown!

ENERGY

Reboot!




aSSIsT: Software Security for the IoT

Intermittent Computing: Results

= Problem: securing persistent state
e Results: paper at ENSSYS20

= Problem: energy attacks
e How to detect the attacker is messing with the source?
e How to mitigate the effects?

= Findings:
e Energy attacks may cause priority inversion,
livelocks, and unwanted synchronization
= Outcomes:

e A monitoring system with 95%+
accuracy and little overhead

e A mitigation architecture to let
programmers deal with it

2021-12-06



aSSIsT: Software Security for the IoT

Opportunities for Future Work and Collaboration

Testing of protocol implementations
= Applying test techniques to other IoT protocols (e.g., EDHOC, OSCORE, ...)
Software analysis

= Test effectiveness of our techniques on other IoT software

TEEs

= Remote attestation and software-state certification of IoT devices

= Realization on open-source hardware
Intermittent computing

= Low-power reconfigurable hardware
= Energy-harvesting technology




