
aSSIsT

Software Security for the IoT

Bengt Jonsson Luca Mottola
Shahid Raza Konstantinos Sagonas

aSSIsT: Software Security for the IoT

2021-12-06

Internet of Things (IoT):

 Primary concern: Security

Focus of aSSIsT:

 Security of IoT Software
• in platforms, communications, applications.

Challenges:

 Large attack surface
• Internet, Wireless, Physical

 Resource-constrained platforms
 Lack of support (memory protection, intrusion detection, …)

Background and Motivation

aSSIsT: Software Security for the IoT

2021-12-06

Overall Goal:

Develop techniques to make IoT software resilient against security attacks,
for use by developers of Software for IoT

Approach:

Advance state-of-the-art in
1. Testing and verification of security protocol implementations

2. Testing and security analysis of IoT software

3. Run-time protection mechanisms

 Trusted execution environments

 Low-power intermittent computing

Goals and Approach

aSSIsT: Software Security for the IoT

2021-12-06

Uppsala University, Dept. IT
Senior: Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig

PostDocs: Paul Fiterau-Brostean, Clement Poncelet

PhD: Hooman Asadian, Sarbojit Das, Magnus Lång, Fredrik Tåkvist

RISE CS, Kista
Senior: Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt

PostDocs: Navid Bhatti, Sileshi Demesie Yalew, Carlos Penichet

Ph.D: Anum Khurshid

Reference Group

ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra

Consortium

aSSIsT: Software Security for the IoT

2021-12-06

Testing of Security Protocols Implementations

DTLS Server

Connection Establishment in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 1:

Correct ordering of packets received and sent

 E.g., can authentication be bypassed?

Solution:

State Fuzzing

 Systematic application of constructed input sequences

 Automated detection of packet ordering errors

 Applied to DTLS, SSH, TCP

aSSIsT: Software Security for the IoT

2021-12-06

Testing of Security Protocols Implementations

Packet structure in DTLS

Tester

Challenge:

Cover all possible sequences of attacker inputs

Challenge 2:

Correctness of packet data

 E.g., is correctness of size fields in input packets checked?

• Insufficient checks cause overreads/overwrites (cf. Heartbleed)

Solution:

Symbolic Execution

 Covers all values of data fields in input packets

 Detects insufficient checking of packet contents, and
incorrect data in output

 Applied to DTLS

TLS server

DTLS Server

aSSIsT: Software Security for the IoT

2021-12-06

Detect bugs and vulnerabilities using

Fuzzing (or fuzz testing)

fast software testing based on random inputs

Symbolic Execution

slow but effective in exploring most/all program paths

Hybrid Fuzzing

technique that combines the two above

Our target: Contiki-NG

“The OS for Next Generation of IoT Devices”

Software Analysis for IoT Software

aSSIsT: Software Security for the IoT

2021-12-06

Created infrastructure to fuzz at different network stack layers

Detected and fixed:

• 17 vulnerabilities (in IPv6, 6LoWPAN, ICMPv6, and RPL)

Using 8 state-of-the-art fuzzing tools

• Mutation-based: AFL, AFL-cf, Mopt

• Hybrid: Angora, QSym, Intriguer, SAVIOR, SymCC

Fuzzing the Contiki-NG Network Stack

aSSIsT: Software Security for the IoT

2021-12-06

Fixes of bugs and vulnerabilities found in fuzzing research:

• For Contiki-NG:
• 17 bug fixes and 6 CVEs

• First continuous integration test suite for Contiki-NG which directly targets security

• For DTLS implementations:
• 17 bug fixes and 3 CVEs

• In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

Open-source software tools:

• DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations

• PropEr: Property-based testing, now also for network protocols

• Nidhugg: Finding concurrency errors in concurrent C code

Impact on Existing IoT Software

aSSIsT: Software Security for the IoT

2021-12-06

Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software components

 Partition memory and peripherals into secure and normal processing world

 Secure boot, digital signatures, authentication, firmware update

 ARM supports TEE security extension in microcontrollers: TrustZone-M

Problems:

1. Communication channel between secure and normal world is vulnerable
• No way to authenticate incoming communication request from the normal to secure world

2. Impossible to detect if a secure application is compromised
• unauthorized activities within TEEs must be mitigated

Trusted
AppTrusted

App

Normal
AppNormal

AppNormal
App

Secure World Normal World

Secure Memory Normal Memory

Peripherals

aSSIsT: Software Security for the IoT

2021-12-06

Solutions:

1. ShieLD: Lightweight message protection scheme ensuring confidentiality
and integrity

2. TEE-watchdog: Mitigation of unauthorized activity of applications in TEE

Proof-of-concept implementations on IoT hardware w. TrustZone-M

 Minimal execution overhead

Publications under submission.

Future Work:

 Remote attestation of IoT devices

 Software-state certification of IoT devices

Trusted Execution Environments (TEE)

aSSIsT: Software Security for the IoT

2021-12-06

Securing Intermittent Computing

CHARGING RUNNING

E
N

E
R
G

Y

TIME

STARTUP
THRESHOLD

OPERATING
THRESHOLD

Shutdown! Reboot!

Energy
Harvesting

aSSIsT: Software Security for the IoT

2021-12-06

 Problem: securing persistent state

• Results: paper at ENSSYS20

 Problem: energy attacks
• How to detect the attacker is messing with the source?

• How to mitigate the effects?

 Findings:

• Energy attacks may cause priority inversion,
livelocks, and unwanted synchronization

 Outcomes:

• A monitoring system with 95%+
accuracy and little overhead

• A mitigation architecture to let
programmers deal with it

Intermittent Computing: Results

aSSIsT: Software Security for the IoT

2021-12-06

Testing of protocol implementations

 Applying test techniques to other IoT protocols (e.g., EDHOC, OSCORE, …)

Software analysis

 Test effectiveness of our techniques on other IoT software

TEEs

 Remote attestation and software-state certification of IoT devices

 Realization on open-source hardware

Intermittent computing

 Low-power reconfigurable hardware

 Energy-harvesting technology

Opportunities for Future Work and Collaboration

