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aSSIsT: Software Security for the IoT

Background and Motivation

Internet of Things (IoT):
= Primary concern: Security
Focus of aSSIsT:

= Security of IoT Software
e in platforms, communications, applications.

Challenges:

= Large attack surface
o Internet, Wireless, Physical

= Resource-constrained platforms
— Lack of support (memory protection, intrusion detection, ...)
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Goals and Approach

Overall Goal:

Develop techniques to make IoT software resilient against security attacks,
for use by developers of Software for IoT

Approach:

Advance state-of-the-art in
1. Testing and verification of security protocol implementations
2. Testing and security analysis of IoT software
3. Run-time protection mechanisms
= Trusted execution environments
= Low-power intermittent computing

2021-12-06



aSSIsT: Software Security for the IoT

Consortium

Uppsala University, Dept. IT

Senior:  Bengt Jonsson, Kostis Sagonas, Mohammed Faouzi Atig
PostDocs: Paul Fiterau-Brostean, Clement Poncelet

PhD: Hooman Asadian, Sarbojit Das, Magnus Lang, Fredrik Takvist

RISE CS, Kista

Senior:  Luca Mottola, Shahid Raza, Nicolas Tsiftes, Thiemo Voigt
PostDocs: Navid Bhatti, Sileshi Demesie Yalew, Carlos Penichet
Ph.D: Anum Khurshid

Reference Group
ASSA ABLOY, Intel Sweden, LumenRadio, Upwis, Wittra
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Testing of Security Protocols Implementations

Challenge: Connection Establishment in DTLS
Cover all possible sequences of attacker inputs
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Challenge 1: Tester Blewer,

DTLS Server
Correct ordering of packets received and sent

= E.g., can authentication be bypassed?

Solution: N CE\ZC\Z,ZK;%’,
State Fuzzing %
= Systematic application of constructed input sequences e Fienes
=  Automated detection of packet ordering errors
= Applied to DTLS, SSH, TCP
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Testing of Security Protocols Implementations

Challenge:
Cover all possible sequences of attacker inputs

Packet structure in DTLS

Challenge 2: Tester

Correctness of packet data DTLS Server

= E.g., is correctness of size fields in input packets checked?

« Insufficient checks cause overreads/overwrites (cf. Heartbleed)<
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Solution: {
Symbolic Execution P Erotocolversion client_version;
= Covers all values of data fields in input packets sersionts swionia
= Detects insufficient checking of packet contents, and S P
incorrect data in output e
= Applied to DTLS ) T xtension extensions<0..2%16-15;
} ClientHello;
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Software Analysis for IoT Software

Detect bugs and vulnerabilities using
Fuzzing (or fuzz testing)
fast software testing based on random inputs
Symbolic Execution
slow but effective in exploring most/all program paths
Hybrid Fuzzing
technique that combines the two above

Our target: Contiki-NG
"The OS for Next Generation of IoT Devices” yﬁ
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Fuzzing the Contiki-NG Network Stack

Created infrastructure to fuzz at different network stack layers

e

Detected and fixed:
« 17 vulnerabilities (in IPv6, 6LoWPAN, ICMPv6, and RPL)

Using 8 state-of-the-art fuzzing tools

- Mutation-based: AFL, AFL-cf, Mopt
 Hybrid: Angora, QSym, Intriguer, SAVIOR, SymCC




aSSIsT: Software Security for the IoT

Impact on Existing IoT Software

Fixes of bugs and vulnerabilities found in fuzzing research:

« For Contiki-NG:
e 17 bug fixes and 6 CVEs
e First continuous integration test suite for Contiki-NG which directly targets security

« For DTLS implementations:
e 17 bug fixes and 3 CVEs
e In GnuTLS, Java SSE, OpenSSL, PionDTLS, Scandium, TinyDTLS, WolfSSL

Open-source software tools:

« DTLS-Fuzzer: Framework for state fuzzing of DTLS implementations
*  PropEr: Property-based testing, now also for network protocols
- Nidhugg: Finding concurrency errors in concurrent C code
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Trusted Execution Environments (TEE)

TEEs provide efficient mechanisms to isolate critical software components

= Partition memory and peripherals into secure and normal processing world
= Secure boot, digital signatures, authentication, firmware update

= ARM supports TEE security extension in microcontrollers: TrustZone-M

TrustZone®
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Trusted Execution Environments (TEE)

Solutions:

1. ShielLD: Lightweight message protection scheme ensuring confidentiality
and integrity

2. TEE-watchdog: Mitigation of unauthorized activity of applications in TEE
Proof-of-concept implementations on IoT hardware w. TrustZone-M

= Minimal execution overhead

Publications under submission.

Future Work:
= Remote attestation of IoT devices
» Software-state certification of IoT devices




Securing Intermittent Computing
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Intermittent Computing: Results

= Problem: securing persistent state
e Results: paper at ENSSYS20

= Problem: energy attacks
e How to detect the attacker is messing with the source?
e How to mitigate the effects?

= Findings:
e Energy attacks may cause priority inversion,
livelocks, and unwanted synchronization
= Outcomes:

e A monitoring system with 95%+
accuracy and little overhead

e A mitigation architecture to let
programmers deal with it
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Opportunities for Future Work and Collaboration

Testing of protocol implementations
= Applying test techniques to other IoT protocols (e.g., EDHOC, OSCORE, ...)
Software analysis

= Test effectiveness of our techniques on other IoT software

TEEs

= Remote attestation and software-state certification of IoT devices

= Realization on open-source hardware
Intermittent computing

= Low-power reconfigurable hardware
= Energy-harvesting technology




