
Testing IoT Protocol Requirements Using Fuzzing
and Symbolic Execution: Application to CoAP

Hooman Asadian∗, Paul Fiterău-Broştean∗, Bengt Jonsson∗, and Konstantinos Sagonas∗†
∗Department of Information Technology, Uppsala University, Uppsala, Sweden

†School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

Abstract—The rapid expansion of the Internet of Things (IoT)
has introduced the need for thorough testing of its protocol
implementations to ensure conformance to their specifications
and increase their security. This paper investigates the ap-
plication of two of the major testing techniques, fuzz testing
and symbolic execution, to test the implementations of the
Constrained Application Protocol (CoAP), a key protocol in
the IoT ecosystem. We explore the efficacy of these techniques
in discovering requirement violations in CoAP implementations.
Focusing on two widely-used CoAP implementations, libcoap and
FreeCoAP, we systematically apply both fuzzing and symbolic
execution to test conformance with key requirements derived from
CoAP’s specifications. Our findings demonstrate the strengths
and limitations of both approaches, and highlight nine non-
conformances in these implementations, most of which have been
fixed. Finally, we provide insights into how fuzzing and symbolic
execution can be effectively utilized for protocol testing.

I. INTRODUCTION

Network protocols enable reliable communication between
different software and hardware components in most infras-
tructures of our society. Ensuring that the implementations
of these protocols conform to their specifications is critical.
Non-conformance can lead to security breaches, such as
the Heartbleed [8] and the TLS POODLE downgrade [16]
vulnerabilities, both of which were caused by improper handling
of protocol-specific requirements.

With the rapid expansion of the Internet of Things (IoT), simi-
lar attention must be given to quality assurance of its underlying
infrastructure; this includes testing of protocol implementations
developed specifically for IoT systems. Several communication
protocols, including MQTT, CoAP, and EDHOC, have been
designed specifically for IoT environments, such as low-power
devices operating over lossy networks. Implementations of
such protocols merit particular testing effort, since sometimes
they are deployed on devices that are not easy to access or
update upon the discovery of errors. In this paper, we focus
on testing implementations of the CoAP protocol [23], which
plays a crucial role in the IoT ecosystem. CoAP follows a
client/server interaction model similar to that of HTTP, but it
is specifically optimized for machine-to-machine interactions.

Techniques for testing software and communication protocols
have advanced dramatically in the last two decades. One major
class of software testing focuses on detecting runtime errors,
such as crashes and memory access errors, using techniques
such as fuzz testing (fuzzing) and symbolic execution (SE).
These testing techniques have proven very effective at identify-
ing critical bugs, e.g., in systems libraries and device drivers,

but have not been so much used to guarantee that protocol
implementations conform to their specifications. That is the
purpose of conformance testing, which examines whether a
protocol implementation faithfully follows defined standards;
this is essential to prevent subtle but potentially dangerous
deviations that could compromise reliability and security.
Traditional conformance testing techniques are less effective
in uncovering bugs than fuzzing and symbolic execution; for
this purpose some researchers are developing adaptations of
fuzz testing [15] and symbolic execution [22], [24], [2], [3]
that directly check whether a protocol implementation satisfies
(parts of) its specification, e.g., as formulated in its RFC.

This paper investigates the application of fuzzing and
symbolic execution to the challenge of testing CoAP imple-
mentations against its main RFCs. Both techniques aim to
check how a system under test (SUT) responds to a wide
range of different inputs. Fuzzing achieves this by generating a
large number of (random) test inputs, constructed by mutating
previously applied inputs. Using cleverly designed mutation
strategies, it can often —but not always— quickly penetrate
into the many corners of a SUT’s code. Symbolic execution
achieves a similar goal by systematically exploring a range
of code paths followed by the program. It designates part
of the test input as symbolic, and explores the code paths
that are possible for different values of these symbolic inputs.
Technically, this relies on instrumenting the SUT’s code to
enable symbolic manipulation of executed program statements.
Against the above background, this paper:

• investigates the effectiveness of (adaptations of) fuzzing
and symbolic execution in discovering bugs and require-
ment violations in IoT protocol implementations;

• compares fuzzing and SE in terms of their effectiveness
at exposing bugs, as well as in time that this requires;

• (as a by-product) improves the quality of two widely used
CoAP implementations by exposing bugs in them which
have been fixed and/or reported to their developers; and

• offers some advice on how to apply these two techniques
to IoT protocol implementations.

In our investigation, we have tested two well-known CoAP im-
plementations written in C: libcoap [12] and FreeCoAP [9]. To
assess their conformance, we employ twelve core requirements
from the RFC documents that define the CoAP standard. In
order to produce an unbiased comparison of fuzzing and SE, we
have created a common test harness for both these techniques,

which has a common mechanism for checking a requirement,
and which can be re-targeted to either technique by minimal
modifications. The results indicate that both fuzzing and SE are
very effective in locating protocol requirement violations fast;
they have managed to uncover a total of nine bugs in these
two implementations, the majority of which have been fixed
by now and the rest have been reported to their developers.

The rest of this paper is organized as follows: After some
background on fuzzing and SE, §III overviews CoAP, §IV
details our methodology for applying fuzzing and SE to CoAP
implementations, and §V presents our evaluation and findings.
Finally, §VI concludes with a brief discussion.

II. FUZZING AND SYMBOLIC EXECUTION

In this section, we overview fuzzing and symbolic execution
and recent works applying them to protocol implementations.

Fuzz Testing (Fuzzing) has established itself as a powerful
technique for uncovering software bugs by mutating and
executing numerous inputs to trigger and observe unintended
behaviors, particularly in the context of memory errors and
crashes. In the last decade, this area has been led by coverage-
guided greybox fuzzing tools such as American Fuzzy Lop
(AFL) [27] and its successor AFL++ [10], which offer advanced
mutation strategies and enhanced performance, and have been
used across a wide range of applications. Fuzzing tools also
have been applied to test IoT protocol implementations of
IPv6 network stacks (e.g., [20]). Other studies [13], [14],
[28] are specifically aimed at fuzz testing of CoAP imple-
mentations. Several recent works propose techniques that tailor
greybox fuzzing to stateful systems such as communication
protocols [19], [17], [4]. A common characteristic of all these
works is their primary emphasis on uncovering runtime errors
(e.g., crashes) and robustness issues, rather than detecting non-
conformance to the protocol’s specification.

Symbolic Execution (SE), first introduced in the 1970s [11],
has evolved into a powerful technique for exhaustive software
testing [7], enabling systematic exploration of program paths
by representing (selected) inputs symbolically rather than as
concrete values. As a result, SE can uncover bugs, security
vulnerabilities, and potential failures that might be missed
by traditional testing methods. Applications of symbolic
execution for testing network protocol implementations have
been limited. Several works [22], [24], [18], [21], [2], [25],
[3] target network protocol implementations by enabling test
setups to designate specific fields in incoming packets as
symbolic, allowing for the exploration of code paths that are
reachable with different values for these fields. To enhance test
coverage, some works [26], [25] incorporate the protocol’s state
machine into symbolic execution to account for the protocol’s
statefulness. However, the application of these approaches is
limited to detecting runtime errors, and they are not utilized
for checking protocol requirements. KleeNet [22] enables
the checking of correctness properties by manually adding
assertions to the SUT’s source code. Symbolic variables are
employed to simulate occurrences of packet loss and node
failures, prompting SE to explore various error scenarios. The

inserted assertions validate the consistency of the distributed
state. SymbexNet [24] tests protocol implementations by first
employing SE to generate test inputs that explore a wide range
of code paths. These inputs are then replayed on the SUT,
observing potential violations of rules derived from the protocol
specification. Symbolic execution might miss requirement-
violating input, when this input exercises the same code path
on the SUT as non-violating input. Recently, we have proposed
a technique that overcomes this issue by manually embedding
assertions and assumptions into the SUT’s source code [2]. The
net effect is to guide the SE engine to investigate specifically
code paths exercised by packet sequences that can violate
protocol requirements. Follow-up work [3] concentrates the
requirement testing logic into monitors, which are implemented
in a component that is external to the SUT. Monitors provide
a uniform mechanism for checking protocol requirements and
alleviate the need for extensive SUT modifications.

III. CONSTRAINED APPLICATION PROTOCOL

The Constrained Application Protocol (CoAP), as stan-
dardized in RFC 7252 [23], is designed specifically for
constrained nodes and networks, playing a crucial role in
the IoT ecosystem. Although the protocol draws inspiration
from HTTP by adopting the REST architectural style, CoAP
uniquely operates over UDP, distinguishing itself through
asynchronous request and response management via CoAP
messages. This design results in a simpler protocol, free from
historical complexities. CoAP follows a client/server interaction
model similar to that of HTTP, but it is specifically optimized
for machine-to-machine communications that dominate its use.
In these contexts, CoAP devices frequently act as both client
and server. A CoAP client begins an interaction by sending a
request to a server, using methods such as GET or POST, to act
upon a resource identified by a URI on the server. The server
responds with either a representation of the resource or a status
code indicating the outcome of the action. CoAP accommodates
both reliable and unreliable modes of communication. For
reliable communication, a CoAP sender transmits a request as
a Confirmable (CON) message, and the recipient is required to
acknowledge receipt by responding with an Acknowledgment
(ACK) message before a preset timeout period elapses. In cases
where the recipient cannot process the CON message, it sends
back a Reset (RST) message as a form of reply. On the other
hand, when reliability is not a priority, CoAP allows for the
sending of Non-confirmable (NON) messages. These messages
are sent without the expectation of an acknowledgment.

Figure 1 depicts a typical interaction between two CoAP
entities employing a combination of Confirmable and Non-
confirmable messages. The interaction begins with Entity A
sending a CON message to Entity B, requesting the resource lo-
cated at the "/resource". Entity B responds with an ACK message
containing the requested resource, signifying a successful GET
operation. Subsequently, A issues a NON message to perform a
POST request, targeting the "/update" URI to modify a resource
on B. In reply, entity B sends a NON message with status code
"2.04 Changed", confirming that the resource has been updated.

Fig. 1. Sample CoAP Interaction

Entity B then sends a CON message with a PUT request to
either create or update the resource at the "/newdata". Entity A
acknowledges receipt of the PUT request with an ACK message.
This ACK merely indicates the message’s receipt and not the
success of the PUT operation. The sequence concludes with
Entity A sending a RST message to Entity B. This message
indicates an error encountered during the processing of the
PUT request or the inability to fulfill the request, resulting in
the termination of the interaction for this specific operation.

Fig. 2. CoAP Message Format

CoAP employs a concise message format (shown in Fig. 2)
for both requests and responses. The format comprises a 4-byte
binary header, which may be followed by a series of compact
binary options and an optional payload. We will now go over
the key fields in a CoAP message.
Version The header of a CoAP message begins with a version

field, represented as a 2-bit unsigned integer.
Type The type of a CoAP message is identified by a 2-bit

unsigned integer in the message header.
Token Length This 4-bit field specifies the length of the Token

field, which can be between 0 to 8 bytes. The token is
used to correlate requests and responses.

Code The distinction between a request and a response in CoAP
is determined by the code value. This is an 8-bit unsigned
integer divided into a 3-bit class (the most significant bits)
and a 5-bit detail (the least significant bits), formatted as
‘c.dd’. Here, ‘c’ represents a digit ranging from 0 to 7 for
the 3-bit subfield, and ‘dd’ comprises two digits from 00
to 31 for the 5-bit subfield.

Message ID This 16-bit unsigned integer field is used to detect
duplicates and, optionally, enable reliable communication.

Options A variable-length sequence of options that modify
the request or response. Options can specify URI paths,
content formats, query strings, and more. Each option is
a pair which comprises a number and a value.

Payload Maker In CoAP, the presence of a payload in a mes-
sage is indicated by a specific payload marker [23, p. 17],
which is a distinct byte (0xFF). This marker serves to
separate the payload, which is the actual data being
transmitted, from the rest of the message components,
such as the header and any options.

With RFC 7959 [5], CoAP incorporates a feature known as
Block-Wise Transfers to facilitate the transfer of large data. This
mechanism breaks down a large body into a series of smaller
blocks, which is particularly advantageous in constrained
network environments. Such environments often contain devices
with limited memory and bandwidth capacities, making the
transmission of a large body in a single message impractical. A
CoAP entity indicates the need for block-wise transfer through
the inclusion of either a Block1 or Block2 option within the
CoAP message. The Block1 option is employed in requests,
particularly when a client needs to send a large body to the
server. Conversely, the Block2 option is utilized in responses,
allowing the server to send a large body back to the client.
These options are used in managing both the size and sequence
of the blocks within the exchanged messages. The value of a
Block option encodes the following fields:
Block Size (SZX) Specifies the size of each individual block.
More Blocks Indicator (M) Indicates whether additional

blocks will follow the current block.
Block Number (NUM) Represents the relative number of the

current block within a series of blocks of the given size.

IV. METHODOLOGY

In this section, we describe our methodology. In a nutshell,
it involves creating a common test harness (§IV-A), encoding
protocol requirements as assertions within the SUT (§IV-B),
and systematically applying fuzzing (§IV-C) or SE (§IV-D) to
detect deviations from CoAP protocol requirements.

A. Test Harness Creation

The first step is to create a test harness that interacts with a
protocol entity. This harness is responsible for facilitating the
testing process by sending and receiving protocol messages.
Before testing can start, it is necessary to capture a sequence
of packets that are sent to the protocol entity during an
interaction (similar to Fig. 1). Packet capture can be achieved by
configuring sample programs typically provided with the SUT
to perform interactions, and then using tools like TCPdump or
Wireshark to capture the packets that are sent to the protocol
entity (e.g., server) during one such interaction. During testing,
the test harness advances the protocol interaction step by
step using pre-captured packets. At each step, it invokes the
appropriate API from the SUT to process the packet and
generate the next packet from the corresponding response. The
test harness should be able to run test scenarios that are relevant
for all checked requirements. This can be achieved either by

TABLE I
COAP REQUIREMENTS EXTRACTED FROM RFC 7252 AND RFC 7959

Requirement Short Description Reference

Version Validity The version field MUST be set to 1 (01 binary). Other values are reserved for future versions. Messages with unknown version numbers MUST be silently ignored. RFC 7252 [23, p. 16]
Matching Message Type Confirmable messages MUST either carry a request or response, or be empty to elicit a Reset. Non-confirmable messages MUST always carry a request or response. Acknowledgement

messages MUST carry a response or be empty. Reset messages MUST be empty. If these conditions are not met, the recipient MUST reject the message.
RFC 7252 [23, p. 21, 23]

Reserved Code The class can indicate a request (0), a success response (2), a client error response (4), or a server error response (5). All other class values are reserved and MUST be rejected. RFC 7252 [23, p. 16]
Token Length Validity Lengths 9-15 for tokens are reserved, MUST NOT be sent, and MUST be processed as a message format error. RFC 7252 [23, p. 16]
Token Echo The tokens in a response and its respective request MUST match. RFC 7252 [23, p. 35]
Message ID Echo The message ID transmitted in a CON or NON message, MUST be echoed in the ACK or RST message by the recipient. RFC 7252 [23, p. 24]
Repeatable Options An option that is not repeatable MUST NOT be included more than once in a message. RFC 7252 [23, p. 39]
Unrecognized Options Unrecognized options in a message MUST be rejected. RFC 7252 [23, p. 37]

Block Size Validity If the block is not the final block, the block size implied by SZX MUST match the size of the payload in bytes. RFC 7959 [5, p. 10]
Content Format The Content-Format Option sent with the requests or responses MUST reflect the Content-Format of the entire body. RFC 7959 [5, p. 12]
Further Request Block Size The SZX block size specified in a Block1 Option in control usage in a response indicates the maximum block size preferred by the server for subsequent transfers, and the client

should adhere to this size or a smaller one in all further requests within the transfer sequence.
RFC 7959 [5, p. 14]

Missing Blocks If not all previous blocks are available at the server at the time of processing the final block, the transfer fails and error code 4.08 MUST be returned. RFC 7959 [5, p. 14]

running a single interaction that is relevant for all requirements,
or by executing several distinct interactions. In our work, the
constructed test harness serves as a unified mechanism for
requirements checking, and can be easily adapted either for
fuzzing or for symbolic execution with minimal adjustments.

B. Encoding Protocol Requirements as Assertions

Network protocols involve particular requirements for the
sequences of packets exchanged among parties. For CoAP,
these requirements are located in its RFC documents including
RFC 7252 [23] and RFC 7959 [5]. Once requirements, such
as those listed in Table I, have been extracted from the
RFC documents, they can be translated into assertions over
sequences of packets exchanged between protocol entities. The
assertions are then incorporated into the SUT code, in the
region responsible for sending a response to a received packet.
In the two implementations we tested, assertions were inserted
into function coap_session_send_pdu for libcoap, and function
coap_server_trans_send for FreeCoAP. In both cases, these
two functions already took as argument a pointer to the memory
block storing the response. Our assertions used this pointer
to access fields in the response packet. Fields in the received
packet were accessed via a global pointer variable which was
maintained externally in the test harness.

Let us now present the encoding of two example CoAP
requirements by quoting the relevant RFC text and providing
the corresponding assertion that checks the requirement. The
CoAP RFC [23, p. 24] specifies that:

The Message ID is a 16-bit unsigned integer that is generated
by the sender of a Confirmable or Non-confirmable message and
included in the CoAP header. The Message ID MUST be echoed
in the Acknowledgement or Reset message by the recipient.

In Table I, we refer to this requirement as Message ID Echo. Let
pin represent the parsed transmitted packet and pout represent
the response packet. We place the following assertion at the
point where the response packet is being generated:

assert (((pin.type= CON∨ pin.type= NON)∧
(pout.type= ACK∨ pout.type= RST)) =⇒

pin.message_id= pout.message_id)

During the execution of the test harness, this assertion is
evaluated at each step to ensure that for every transmitted
packet of type Confirmable (CON) or Non-confirmable (NON),
the message_id is correctly echoed by the responder.

Some protocol requirements specify relationships between
packets received in a sequence. To capture such relationships,
we can formulate constraints over the fields of a sequence
of packets received by a protocol party. For instance, RFC
7959 [5, p. 14] mandates:

In response to a request with a payload (e.g., a PUT or POST
transfer), the block size given in the Block1 Option indicates the
block size preference of the server for this resource.
...
the client SHOULD heed the preference indicated and, for all
further blocks, use the block size preferred by the server or a
smaller one.

In Table I, this requirement is referred to as Further Request
Block Size. We check this requirement using the excerpt below:

if (first_response∧ pin.code∈ REQ_CODES)
preferred_size := BlockSize(pout)

first_response := false

else

assert((BlockSize(pin)> preferred_size) =⇒
pout.code∈ ERR_CODES)

In this code, first_response is a boolean variable that is
true if pout is the first packet generated by the recipient, and
preferred_size is a variable that stores the server’s preferred
block size. BlockSize is a function that takes a packet and
returns the block size given in the Block1 option. Finally,
REQ_CODES represents the set of codes used for requests, while
ERR_CODES denotes the set of error codes. The above code stores
the preferred size communicated in the first block transmitted by
the server. It then checks that subsequent requests that exceed
this size are rejected by the server, prompting it to generate an
error response. Note that the RFC does not explicitly define a
suggested response when a transmitted block fails to meet the
preferred size requirement. In cases where the RFC is unclear
on the expected behavior, we can use common sense. Here,
we require that the response somehow flags an error.

Once the SUT’s code has been extended with such assertions,
we can employ fuzzing or SE to test whether these assertions
are triggered (i.e., whether the requirements can be violated).

C. Testing Requirements Using Fuzzing

To test using fuzzing, we employed AFL++ (4.10c), a
state-of-the-art fuzzer [10] incorporating contributions from

TABLE II
RESULTS FROM TESTING THE COAP REQUIREMENTS ON LIBCOAP AND FREECOAP USING FUZZING AND SYMBOLIC EXECUTION

libcoap (version 4.3.1) FreeCoAP (commit ffc87fd)

Fuzzing Symbolic Execution Fuzzing Symbolic Execution

Requirement Bug Status1 TTE2 MTE3 TTE2 Time4 Paths Bug Status1 TTE2 MTE3 TTE2 Time4 Paths

Version Validity Fixed (#1376) <1s 193 1s 1s 2 — 43s 6
Matching Message Type Fixed (#1295) <1s 371 4s 16s 38 — 2h51m4s 7844
Reserved Code Fixed (#1300) <2s 546 4s 17s 41 — 2h55m32s 7844
Token Length Validity — 12m42s 31 — 3h00m14s 7083
Token Echo — 1s 2 — 20s 4
Message ID Echo — 1s 1 — 11s 32
Repeatable Options Fixed (#1389) <1s 205 56s 2m29s 213 Reported (#41) <2s 789 3m30s � 28949
Unrecognized Options — 2m36s 196 — � 28917

Block Size Validity Fixed (#1284) <1s 286 1s 2h25m28s 17971 — 37s 203
Content Format — 1s 4 — 1s 1
Further Request Block Size Fixed (#1290) <2s 891 2s 19m14s 27 Reported (#42) ≈40s 36824 3s 45m13s 8497
Missing Blocks Fixed (#1287) <1s 255 6s 3m51s 359 — 1h24m17s 22979

1 Bug Status: non-empty entries report on the bug’s status at the time of this writing; in parentheses is the issue number in the GitHub repositories of libcoap and FreeCoAP.
2 TTE (Time to Exposure): the time it takes to expose the requirement violation (average across five AFL++ fuzzing campaigns or KLEE runs).
3 MTE (Mutations to Exposure): the number of mutations it takes for AFL++ to expose a requirement violation (average across five fuzzing campaigns).
4 Time: the time required for symbolic execution to complete its exploration, with a timeout set at 24 hours (denoted �).

the latest research. As initial seeds, we utilized valid pre-
captured packets obtained from interactions executed using
the sample programs provided with each implementation. The
fuzzer begins by executing the test harness, which performs a
test scenario. It then provides the incoming packet, intended to
be processed by a protocol party, by mutating these seeds. For
some requirements concerning block-wise transfer, multiple
packets need to be processed before an assertion can be checked,
as a state needs to be built. Since standard fuzzers cannot handle
these stateful scenarios, we load all the required packets for
the interaction into a single buffer at different offsets. During a
block-wise transfer, for each packet, the recipient reads from the
appropriate offsets within the buffer. Consequently, the fuzzer
can mutate this single buffer during a fuzzing campaign. All
the assertions are checked simultaneously. To account for the
inherent randomness of fuzzing, fuzzing campaigns are repeated
multiple times. When the fuzzer detects an assertion violation,
it stores the mutated test case that caused the violation, along
with metadata such as the timestamp and number of mutations
before the test case is generated. Analyzing the generated test
case can help identify the reason for the assertion violation.

D. Testing Requirements Using Symbolic Execution

To test using symbolic execution, we employed KLEE (v3.0),
a mature symbolic execution engine [6] built on top of the
LLVM compiler infrastructure. During each symbolic execution
run, only one requirement is checked, necessitating separate
runs for each requirement. In each run, KLEE executes the test
harness, which performs a test scenario using pre-captured valid
packets. For each requirement, before a packet is processed by
a protocol party, the relevant fields specified in the requirement
are treated as symbolic using a KLEE-specific API, while other
fields in the packet remain unchanged. To facilitate the process
of treating a field as symbolic, we used a CoAP parser to
convert loaded packets into data structures. We also used a
serializer to convert the data structure back into a buffer, which
is then processed by the protocol party. For instance, to check

the Message ID Echo requirement, we treated the message_id

and the type in the packet as symbolic. During each SE run,
if a path exists where the checked assertion is violated, KLEE,
with the help of an SMT solver, generates a concrete test case
that violates the assertion. In this context, the test case refers
to the specific values of the fields that were made symbolic.

V. EVALUATION

In this section, we present results from applying our method-
ology to two well-known CoAP implementations: libcoap and
FreeCoAP. We begin by comparing the effectiveness of the
two techniques (§V-A), followed by a description of the bugs
and non-conformances they discovered (§V-B).

A. Effectiveness of Fuzzing and Symbolic Execution

In terms of effectiveness in detecting requirement violations,
we did not notice any significant difference between the two
techniques. On this set of twelve CoAP requirements, both
techniques identified non-conformances for seven of them in
libcoap —all of them have been fixed— and for two of them
in FreeCoAP which have been reported (cf. Table II). Also, all
violations were found quickly: We ran five fuzzing campaigns,
and AFL++ consistently found inputs that violate the assertions
in less than two seconds and 900 mutations on average, with the
exception of one case in FreeCoAP where it needed about 40
seconds and 36 824 mutations on average to find the violation.
Symbolic execution using KLEE was also able to find inputs
that violate the assertions in few seconds for most requirements,
with the exception of the Repeatable Options requirement for
which it needed about one minute for libcoap and three and a
half for FreeCoAP to find inputs that trigger the violation.

For the protocol requirements that an implementation re-
spects, the two techniques differ in a fundamental way. Fuzzing,
being a random testing technique, cannot give any guarantee
other than “No violation was found after trying N input
mutations in time T .” Hence, Table II does not show any
numbers for fuzzing for requirements that are not violated; any

such number depends on the time limit T used for the fuzzing
campaign. In contrast, symbolic execution systematically
explores the program paths and can in principle provide a
guarantee that a requirement is not violated. The Time and
Paths columns of Table II report the time which KLEE took to
explore the corresponding number of paths. For libcoap, we can
see that KLEE explored the search space of most requirements
in few seconds or minutes with the exception of the Block
Size Validity requirement for which it needed to explore about
18 000 paths in two and a half hours. Exploring the search
space of FreeCoAP’s code proved more challenging: for four
of the requirements KLEE took more than an hour to complete
its exploration and for two other requirements the exploration
did not complete within the 24 hour time limit that we used.

Taking the above into account, our experience is that fuzzing
has a slight edge when one is interested in finding specification
violations fast, but investing on SE pays off in the long run.
In most cases, symbolic execution is able to trigger violations
equally fast as fuzzing, and it can also provide guarantees of
the absence of bugs in cases where the SMT solver used by the
SE engine does not time out. Our overall recommendation to
implementors is to adopt the assertion-based methodology to
testing protocol requirements we have described in this paper.

B. Bugs Discovered

We describe the non-conformances grouped by the corre-
sponding requirement.

Version Validity: A violation of the Version Validity re-
quirement occurs when a server, upon receiving a message m
with an invalid version, responds with a Reset message (RST)
rather than ignoring m. This deviation from the RFC can cause
interoperability issues, increase unnecessary network traffic,
and potentially be exploited to fingerprint the server.

Matching Message Type: This requirement is violated when
there is a discrepancy between the message Type and Code

fields. Our testing revealed that a libcoap server failed to
reject an erroneous message of type ACK that carries a request.
Instead, it responded with the requested resource in a non-
confirmable message. This non-conformance can also be used
for fingerprinting or cause other problems.

Reserved Code: Another non-conformance arises when
entities do not reject messages containing reserved codes.
Accepting messages with these codes can cause interoperability
issues among different CoAP implementations.

Repeatable Options: This non-conformance arises when
a server cannot properly handle an (erroneous) message m
containing more than one instance of an unrepeatable option.
In such cases, the server proceeded with a response rather
than rejecting m. Failing to satisfy this CoAP requirement
can lead to interoperability issues and potential erroneous data
interpretation. Both libcoap and FreeCoAP implementations
exhibited this non-conformance.

The remaining three non-conformances are related to block-
wise transfers.

Block Size Validity: A significant bug was detected in libcoap
when there is a mismatch between the block size suggested by

the SZX value and the actual size of a message’s payload. In
such scenarios, the CoAP entity processes the message based
exclusively on the SZX value, disregarding the actual payload
size. This situation leads to two different problems:

• If the SZX value indicates a block size larger than the
actual payload, arbitrary data can be stored on the server.
Such a situation might cause buffer overwrites, overreads,
and introduce various security vulnerabilities due to the
processing of unintended data.

• Conversely, if the SZX value denotes a block size smaller
than the actual payload, only a fraction of the payload
gets stored on the server. This leads to the partial loss of
transmitted data, as part of the payload is discarded.

After reporting the bug that our testing revealed, libcoap’s
development team addressed it through Pull Request (PR)
#1286. Subsequent testing of the SUT with the changes in this
PR revealed that the fix was only partial. Specifically, the PR
resolved the problem only in scenarios where a server receives
a request from a client, not in cases where a client receives a
response from a server. The issue was fully resolved by another
PR (#1294) which was later merged into libcoap’s code base.

Further Request Block Size: In the CoAP block-wise transfer
process, once the block size has been negotiated, it is expected
that all entities will adhere to this agreed-upon size for the
remainder of the data exchange. A non-conformance arises
when an entity encounters a message m with a block size
that deviates from the one previously established. Instead of
ignoring m or reporting an error, the entity adjusted its own
block size to align with the block size of m. Both libcoap and
FreeCoAP implementations exhibited this non-conformance.

Missing Blocks: A non-conformance in libcoap was detected
when a server fails to recognize the absence of one or more
blocks prior to receiving the final block in a block-wise transfer.
Specifically, the issue occurs under the following circumstances:
When a CoAP server receives a block with the ‘More’ (M) bit
set to 0, it interprets this as the final block of the transfer.
At this point, the server is required to have all preceding
blocks available in order to successfully reassemble and process
the complete data. However, in certain scenarios, the server
does not adhere to this requirement. For instance, if data is
partitioned into three blocks and the server receives blocks
numbered 0, 2, and 3. In such cases, the server is expected to
detect this discrepancy and return an error. Nonetheless, the
libcoap server erroneously proceeded without recognizing that
a block is missing, failing to return the anticipated error code.

VI. CONCLUSIONS

In this paper, we investigated the use of two major testing
techniques, fuzzing and symbolic execution, to test IoT protocol
implementations for conformance to the requirements in their
specifications, and applied them to two widely used imple-
mentations of the CoAP protocol. Our results demonstrated
the effectiveness of these two techniques when combined with
the assertion-based methodology we advocate. Most notably,
we have shown that both fuzzing and SE are able to uncover

requirement violations that have remained unnoticed by their
developers, and that this can be done quickly.

We hold that our work offers practical insights for developers
and researchers in the area of IoT protocol requirement testing.
By highlighting the strengths and limitations of fuzzing and
symbolic execution, we provide guidance on how to improve
the security and reliability testing of IoT networks.

ACKNOWLEDGMENTS

We thank Sabor Amini for his initial work on using
SE to test CoAP implementations [1]. Although our testing
infrastructure differs significantly from his, some of the libcoap
bugs of Table II were originally discovered and reported by him.

This research was partially funded by the Swedish Founda-
tion for Strategic Research (SSF) through project aSSIsT and by
grants from the Swedish Research Council (Vetenskapsrådet).

REFERENCES

[1] S. Amini, “Using requirement-driven symbolic execution to test imple-
mentations of the CoAP and EDHOC network protocols,” Master’s thesis,
Uppsala University, Department of Information Technology, Sep. 2023.

[2] H. Asadian, P. Fiterău-Broştean, B. Jonsson, and K. Sagonas, “Applying
symbolic execution to test implementations of a network protocol
against its specification,” in IEEE Conference on Software Testing,
Verification and Validation, ser. ICST 2022. IEEE, Apr. 2022, pp.
70–81. [Online]. Available: https://ieeexplore.ieee.org/document/9787883

[3] ——, “Monitor-based testing of network protocol implementations using
symbolic execution,” in Proceedings of the 19th International Conference
on Availability, Reliability and Security, ser. ARES ’24. ACM, Jul.
2024. [Online]. Available: https://doi.org/10.1145/3664476.3664521

[4] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in 31st USENIX Security Symposium, ser. USENIX
Security 2022. USENIX Association, Aug. 2022, pp. 3255–3272.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity22/
presentation/ba

[5] C. Bormann and Z. Shelby, “Block-Wise Transfers in the Constrained
Application Protocol (CoAP),” RFC 7959, Aug. 2016. [Online].
Available: https://www.rfc-editor.org/info/rfc7959

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[7] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013. [Online].
Available: https://doi.org/10.1145/2408776.2408795

[8] M. M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed
101,” IEEE Secur. Priv., vol. 12, no. 4, pp. 63–67, 2014. [Online].
Available: https://doi.org/10.1109/MSP.2014.66

[9] K. Cullen, “Freecoap.” [Online]. Available: https://github.com/
keith-cullen/FreeCoAP

[10] A. Fioraldi, D. C. Maier, H. Eißfeldt, and M. Heuse, “AFL++:
Combining incremental steps of fuzzing research,” in 14th USENIX
Workshop on Offensive Technologies, ser. WOOT 2020. USENIX
Association, Aug. 2020. [Online]. Available: https://www.usenix.org/
conference/woot20/presentation/fioraldi

[11] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
https://doi.org/10.1145/360248.360252

[12] “libcoap.” [Online]. Available: https://www.libcoap.net

[13] F. Liljedahl, “Exploring the possibilities of robustness testing of CoAP
implementations using evolutionary fuzzing,” Master thesis, KTH,
Stockholm, Sweden, 2019.

[14] B. Melo and P. Geus, “Robustness testing of CoAP server-side
implementations through black-box fuzzing techniques,” in Proceedings
of the 17th Brazilian Symposium on Information and Computational
Systems Security. SBC, 2017, pp. 533–540. [Online]. Available:
https://sol.sbc.org.br/index.php/sbseg/article/view/19528

[15] R. Meng, Z. Dong, J. Li, I. Beschastnikh, and A. Roychoudhury,
“Linear-time temporal logic guided greybox fuzzing,” in Proceedings of
the 44th International Conference on Software Engineering, ser. ICSE’
22. New York, NY, USA: ACM, May 2022, pp. 1343–1355. [Online].
Available: https://doi.acm.com/10.1145/3510003.3510082

[16] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites:
exploiting the SSL 3.0 fallback,” 2014. [Online]. Available: https:
//www.openssl.org/~bodo/ssl-poodle.pdf

[17] R. Natella, “StateAFL: Greybox fuzzing for stateful network servers,”
Empir Software Eng, vol. 27, no. 7, p. 191, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-022-10233-3

[18] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. D.
Millstein, “Analyzing protocol implementations for interoperability,”
in 12th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI 15. USENIX Association, May 2015, pp.
485–498. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pedrosa

[19] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: A
greybox fuzzer for network protocols,” in IEEE 13th International
Conference on Software Testing, Validation and Verification, ser.
ICST 2020. IEEE, Oct. 2020, pp. 460–465. [Online]. Available:
https://ieeexplore.ieee.org/document/9159093

[20] C. Poncelet, K. Sagonas, and N. Tsiftes, “So many fuzzers, so little
time*: Experience from evaluating fuzzers on the Contiki-NG network
(hay)stack,” in 37th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’22. New York, NY, USA: ACM,
2023. [Online]. Available: https://doi.org/10.1145/3551349.3556946

[21] F. Rath, D. Schemmel, and K. Wehrle, “Interoperability-guided testing
of QUIC implementations using symbolic execution,” in Proceedings
of the Workshop on the Evolution, Performance, and Interoperability
of QUIC, ser. EPIQ@CoNEXT 2018. ACM, Dec. 2018, pp. 15–21.
[Online]. Available: https://doi.org/10.1145/3284850.3284853

[22] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle, “KleeNet: Discovering insidious interaction bugs in
wireless sensor networks before deployment,” in Proceedings of the 9th
International Conference on Information Processing in Sensor Networks,
ser. IPSN 2010. ACM, Apr. 2010, pp. 186–196. [Online]. Available:
https://doi.org/10.1145/1791212.1791235

[23] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7252

[24] J. Song, C. Cadar, and P. R. Pietzuch, “SYMBEXNET: Testing network
protocol implementations with symbolic execution and rule-based
specifications,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 695–709,
2014. [Online]. Available: https://doi.org/10.1109/TSE.2014.2323977

[25] S. Tempel, V. Herdt, and R. Drechsler, “Specification-based symbolic
execution for stateful network protocol implementations in the
IoT,” IEEE Internet of Things Journal, 2023. [Online]. Available:
https://doi.org/10.1109/JIOT.2023.3236694

[26] S. Wen, Q. Meng, C. Feng, and C. Tang, “A model-guided
symbolic execution approach for network protocol implementations and
vulnerability detection,” PloS one, vol. 12, no. 11, p. e0188229, 2017.
[Online]. Available: https://doi.org/10.1371/journal.pone.0188229

[27] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2013.

[28] Y. Zeng, M. Lin, S. Guo, Y. Shen, T. Cui, T. Wu, Q. Zheng, and
Q. Wang, “MultiFuzz: A coverage-based multiparty-protocol fuzzer
for IoT publish/subscribe protocols,” Sensors, vol. 20, no. 18, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/18/5194

