
So Many Fuzzers, So Little Time∗
Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack

Clément Poncelet
clement.poncelet@it.uu.se

Uppsala University
Uppsala, Sweden

Konstantinos Sagonas
kostis@it.uu.se

Uppsala University
Uppsala, Sweden

National Technical University of Athens
Athens, Greece

Nicolas Tsiftes
nicolas.tsiftes@ri.se

RISE Research Institutes of Sweden
Stockholm, Sweden
KTH Digital Futures
Stockholm, Sweden

ABSTRACT

Fuzz testing (“fuzzing”) is a widely-used and effective dynamic tech-
nique to discover crashes and security vulnerabilities in software,
supported by numerous tools, which keep improving in terms of
their detection capabilities and speed of execution. In this paper,
we report our findings from using state-of-the-art mutation-based
and hybrid fuzzers (AFL, Angora, Honggfuzz, Intriguer,MOpt-AFL,
QSym, and SymCC) on a non-trivial code base, that of Contiki-NG,
to expose and fix serious vulnerabilities in various layers of its
network stack, during a period of more than three years. As a
by-product, we provide a Git-based platform which allowed us to
create and apply a new, quite challenging, open-source bug suite
for evaluating fuzzers on real-world software vulnerabilities. Using
this bug suite, we present an impartial and extensive evaluation
of the effectiveness of these fuzzers, and measure the impact that
sanitizers have on it. Finally, we offer our experiences and opinions
on how fuzzing tools should be used and evaluated in the future.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software defect analysis.

KEYWORDS

Software security, security testing, fuzz testing, coverage-guided
fuzzing, hybrid fuzzing, IoT, Contiki-NG
ACM Reference Format:

Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes. 2022. So Many
Fuzzers, So Little Time: Experience from Evaluating Fuzzers on the Contiki-
NG Network (Hay)Stack. In 37th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’22), October 10–14, 2022, Rochester, MI,

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.
3556946

1 INTRODUCTION

A famous quote attributed to Dijkstra states that “If debugging is
the process of removing software bugs, then programming must be the

∗With apologies to the title of Miquel Brown’s song from 1983.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3556946

process of putting them in.” Perhaps due to most programming still
done by humans, all non-trivial software contains bugs. Some of
these bugs are serious vulnerabilities and often exploitable. More-
over, there exist application domains where pretty much all serious
software vulnerabilities are exploitable. One such domain, of inter-
est to us, is that of IoT systems; more specifically, that of operating
systems for resource-constrained IoT devices. In this domain, a soft-
ware bug that crashes the OS has severe consequences: it results
in DoS at best or, worse, brings down the whole IoT system (e.g.,
a home alarm, an environmental monitoring system, etc.) perma-
nently. So, naturally, developers and researchers interested in such
OSes want techniques and tools that help them find such software
bugs and fix them before they make it into OS releases.

In recent years, a successful technique to discover crashes in
software is fuzz testing [16] or simply fuzzing. In this paper, we
specifically focus on coverage-guided grey-box fuzzing [27, 30] tech-
niques. Since mid 2018, we have jumped on the so-called fuzzing

hype-train [19], and have been using various mutation-based grey-
box and hybrid fuzzers to discover bugs in Contiki-NG [17], the
Next Generation OS for IoT devices forked from its predecessor,
Contiki. During the same period, we have been following closely
the research published in the area, esp. that related to hybrid fuzzing
techniques, and trying out fuzzers which were already available or
ever since released as open source. Some research questions that
naturally come to mind from engaging in such a project are:
RQ.1 (Effectiveness) Are hybrid fuzzers superior in exposing bugs

and vulnerabilities than mutation-based fuzzers?
RQ.2 (Efficiency) Do some of the fuzzers employ techniqueswhich

allow them to expose bugs fast? If so, which?
RQ.3 (Consistency) Are any fuzzer implementations able to ex-

pose (some of) the bugs in all/most of their runs?
This paper provides its answers to these questions by follow-

ing a systematic evaluation. More precisely, we employ a total of
eight different fuzzers, four mutation-based (two AFL variants [30],
Honggfuzz [27], andMOpt-AFL [14]) and four recent hybrid fuzzers
(Angora [4], QSym [29], Intriguer [5], and SymCC [21]) to produce
inputs that reliably trigger crashes in the code base of Contiki-NG’s
low-power IPv6 stack. Over a period of a bit more than three years,
we have been precisely documenting these bugs, reporting them
to Contiki-NG’s developers so that they get fixed, and obtaining
CVEs for them when the pull requests which fixed them got merged
into its development branch. Our efforts have made Contiki-NG
more robust and secure, but have also made us more knowledgeable.
Based on the experience we have gained, we have formed some
opinions both on how fuzzing tools should be used and on how they

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-3165-634X
https://orcid.org/0000-0001-9657-0179
https://orcid.org/0000-0003-3139-2564
https://doi.org/10.1145/3551349.3556946
https://doi.org/10.1145/3551349.3556946
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3551349.3556946


ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

should be evaluated and compared to each other. Of course, we are
not the first to notice and report views and findings on these top-
ics. For example, several papers published in top conferences and
journals [11–13] report that various questionable practices have
been used to evaluate and compare fuzzing techniques and tools,
and that there is a clear need for better, more “real-world”, and
more challenging benchmarks. In this paper, besides corroborating
experiences and recommendations on these topics published in the
literature, we contribute some of our own. We also mention when
we do not fully agree with some of the above papers, and where
our findings differ from them and why.

We hold that reporting such user experiences is valuable for
the fuzzing research community anyway, but we go beyond that.
We have created benchmarking infrastructure that can be used to
evaluate existing and, more importantly, future fuzzing techniques
and tools on the Contiki-NG code base. Our paper’s artifact, which
is available on GitHub, currently comes with a suite of a total of
eighteen ground truth bugs, all discovered during our fuzzing train
journey, that correspond to vulnerabilities at different layers of
Contiki-NG’s code base, and are increasingly difficult to expose.
The scripts that the artifact contains use the Git commit history
in order to rewind and replay the evolution of Contiki-NG’s code
base starting from a particular commit where a number of these
eighteen vulnerabilities have been fixed (and the remaining have
not). We also evaluate the eight fuzzers mentioned above on this
suite, and report our findings from running several 24-hour ex-
periments for individual ground truth bugs. As we will see, some
of the bugs in our suite are currently quite challenging for most
contemporary mutation-based and hybrid fuzzers. This is due to
inherent characteristics of Contiki-NG’s code base: it implements
a network stack, and in order to reach some particular layer of its
code base, the input has to pass the checks of other layers.

Quite often, fuzzing is aided by sanitizers, i.e., runtime analysis
tools that employ instrumentation to discover crashes or undefined
behaviour in software. Sanitizer-aided fuzzing has pros and cons:
Sanitizers help in exposing and triaging bugs and vulnerabilities
more accurately [23], but they also impose a non-negligible run-
time overhead, which means that fuzzers explore (significantly)
fewer executions within a given time budget when using them. As
far as we know, there is no published work that investigates this
tradeoff, i.e., reports whether sanitizers have a clear positive effect
on bug discovery or whether it is better to not slow down the fuzzer
and allow it to explore more inputs during a time-limited fuzzing
campaign. This is the fourth and last question we investigate.
RQ.4 (Sanitizer Impact) Do sanitizers pay off for their runtime

overhead in terms of exposing more vulnerabilities within a
time-limited fuzzing run?

In summary, this work:
• Reports findings from using eight state-of-the-art mutation-
based and hybrid fuzzers on a non-trivial code base, that of
the Contiki-NGOS, to discover and fix serious vulnerabilities,
many of which have CVEs (cf. Table 2).

• Presents an impartial evaluation of the effectiveness of these
eight fuzzers, not with an aim to declare a “winner” among
them, but so as to highlight those that are expected to per-
form well on code bases with Contiki-NG’s characteristics.

• Evaluates the impact that two sanitizers (AddressSanitizer
and Effective Type Sanitizer) have on fuzzing tools.

• Offers a new, quite challenging, bug suite for evaluating
fuzzers on real-world software bugs.

• Comes with a Git-based platform as artifact, and argues for
the pros of using such a benchmarking approach for evaluat-
ing fuzzers in terms of their ability to expose vulnerabilities.

The remainder of this paper starts by presenting relevant in-
formation about the fuzzing tools we use and a brief review of
Contiki-NG’s layered architecture (§2). The next and main sections
of this paper present the details of our ground truth suite with the
results of our evaluation (§3) and our investigation on sanitizer
impacts on fuzzing tool effectiveness (§4). The paper ends with
related work (§5) and some final remarks.

2 BACKGROUND

First, in §2.1, we overview the fuzzing techniques and tools we
use in our evaluation. Note that we do not aim to present an ex-
haustive account of fuzzing technology; instead, we concentrate on
recently proposed and state-of-the-art mutation-based and hybrid
fuzzers, focusing on characteristics that can influence answers to
our research questions. We then briefly present Contiki-NG in §2.2.

2.1 Fuzzing

Fuzz testing [15, 16] discovers software bugs by randomly generat-
ing inputs and feeding them to a program under test (the “target”).
Since most targets expect that their inputs have a specific structure,
mutation-based fuzzers demand an initial set of inputs (“seeds”) from
their users, and start applying small mutations to them. Their aim
is to generate mutants satisfying the target’s consistency checks
and manage to penetrate its code deeply. Coverage-guided grey-box
fuzzers, such as the popular American Fuzzy Lop (AFL) [30], in-
strument the target lightly to return to the fuzzer some feedback
after each target execution (e.g., which code blocks were visited,
information which is maintained in a coverage bitmap in the case
of AFL). AFL’s instrumentation is implemented by two compan-
ion utilities that act as a drop in replacement for gcc and clang:
afl-gcc and afl-clang use an ad hoc script to instrument the target
at the assembly level. A third utility, afl-clang-fast [1], uses true
compiler-level instrumentation, claiming to produce a target con-
figuration that can be up to ten times faster than the corresponding
target produced by afl-clang.1 Mutation-based fuzzers implement
a set ofmutators (i.e., operators that modify the input in some way),
and must choose how frequently to apply each of them. In essence,
this is a priority scheduling (i.e., an optimization) problem. How-
ever, it is a dynamic optimization problem, because the mutator
that will generate an interesting mutant depends on the current
input, and may greatly vary during a fuzzing session.MOpt [14]
proposes to use a particle swarm optimization algorithm to compute
the optimal selection probability distribution over those mutators,

1In our evaluation, we include two variants of AFL: afl-gcc and afl-clang-fast
(which we abbreviate AFL-cf). AFL-cf highlights the impact that instrumentation
can have on AFL’s effectiveness, and also on the effectiveness of hybrid fuzzers that
also instrument using afl-clang-fast. As we will see, our experiences and results
agree with observations made by Poeplau and Aurélien [20] about how Intermediate
Representations or instrumentation for symbolic execution may affect not only fuzzers’
speed but also their ability to detect bugs. More on that in §3.

https://github.com/assist-project/so-many-fuzzers-artifact


So Many Fuzzers, So Little Time ASE ’22, October 10–14, 2022, Rochester, MI, USA

instead of using a fixed mutator selection strategy. For our evalua-
tion, we usedMOpt-AFL, the authors’ algorithm implementation
within AFL (henceforth referred to asMOpt, for simplicity). We also
include Honggfuzz [27] to our evaluation, a tool recently reported
to outperform many other fuzzers in an experimental study similar
to ours [2]. This mutation-based fuzzer relies on the ptrace API
together with UndefinedSanitizer [28] to detect target’s crashes.
With this implementation, Honggfuzz provides a different capa-
bility of detecting vulnerabilities than AFL, and provides better
information to the users about why a crash occurred.

Various researchers have proposed hybrid fuzzers [18], i.e., fuzzing
tools that also run some heavier code analysis tool(s) alongside a
mutation-based fuzzer. A hybrid fuzzer feeds its dynamic analysis
component with fuzzer’s mutants in order to generate inputs that a
grey-box fuzzer is unlikely to generate due to its lack of knowledge
about the program. The inputs produced by the dynamic analysis
component are then fed back into the mutation-based fuzzer, which
in turn can then use them to penetrate new ‘easily-reachable’ code.
Driller [26] was the first hybrid fuzzer to popularize this idea, by
running a concolic execution engine whenever AFL did not show
any signs of progress (i.e., in periods when AFL failed to come
up with mutants that increase code coverage). Driller’s approach
was subsequently adopted and improved upon by the authors of
QSym [29]. QSym’s concolic execution engine executes an input
generated by mutation and, for every encountered branch, it tries
to generate inputs that follow the alternative paths. QSym imple-
ments a complete concolic engine executing binary instructions,
and adds heuristics to further speedup the execution, trading the
strict soundness requirements of conventional concolic execution
for better performance [29]. Interestingly, Angora [4], which is also
a hybrid fuzzer, has opted for a different approach. It uses taint anal-
ysis with a machine learning algorithm to generate inputs leading to
alternative paths. Taint analysis provides target’s instructions and
the input bytes they accessed during an execution. With that knowl-
edge, Angora focuses on ‘flipping’ a target branch by modifying
only the tainted bytes of the input. Additionally, Angora extends
AFL’s coverage feedback component to maintain information at
finer granularity, which however requires more time and memory.
Intriguer [5] is a fuzzer that combines taint analysis with symbolic

execution. From a tainted trace, it removes any mov-like instructions,
and reconstructs the symbolic expressions by mapping input to
machine instructions’ values. As a result, Intriguer’s symbolic exe-
cution component becomes cheaper at the cost of the previous steps.
Finally, SymCC [21], a more recent hybrid fuzzer, directly embeds
the symbolic process of executing an input into the target. This way,
for a given input, the instrumented target executes symbolically
in native speed. SymCC’s technique allows to use any symbolic
reasoning tool as a backend, and proposes two implementations:
one simply creating symbolic expressions and offloading them to an
SMT solver; the other using the concolic execution engine of QSym.
We have selected SymCC-QSym (SymCC with QSym backend) for
our evaluation, because it is the faster implementation.

2.2 Contiki-NG Network Stack

The fuzzers’ target is Contiki-NG [17], which is an open-source
operating system designed for resource-constrained IoT devices. Its
main feature is its low-power IPv6 stack, which includes a variety of

IPv6
RPL

TCP UDP / DTLS

CSMA TSCH

ICMPv6
IPv6 ND

MQTTHTTP

6LoWPAN

IEEE 802.15.4BLE

SNMPCoAP

Transport layer

Network layer

Adaptation layer

MAC layer

Physical layer

Application layer

Figure 1: Protocols at different layers in the Contiki-NG low-

power IPv6 stack. The components in bold show where our

fuzzing experiments have revealed code vulnerabilities.

standard communication protocols implemented in a compact man-
ner. Figure 1 shows the key components of Contiki-NG’s network
stack arranged at different layers.

At its lowest layers, where incoming packets enter the network
stack in a deployed network, Contiki-NG supports communication
standards such as IEEE 802.15.4 and Bluetooth Low Energy (BLE).
For medium access control, Contiki-NG provides the option be-
tween a basic Carrier Sense Multiple Access (CSMA) protocol and
the IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) proto-
col. Between the MAC layer and the network layer resides the
6LoWPAN adaptation layer, which performs header compression
and fragmentation of IPv6 packets. At the network layer, the cen-
tral component is the IPv6 implementation, which is based on the
original 𝜇IP in the Contiki OS [8]. It relies on ICMPv6 for control
messages, and IPv6 neighbor discovery (IPv6 ND) for translating
IPv6 addresses to link-layer addresses and for keeping track of
neighbors and routers. For routing within multi-hop wireless net-
works, Contiki-NG implements the Routing Protocol for Low-power
and lossy networks (RPL), which uses ICMPv6 to exchange mes-
sages. At the transport layer, Contiki-NG supports both UDP and
TCP communication. Both of these implementations are integrated
deeply into the 𝜇IP component in order to achieve small code size.
Furthermore, Contiki-NG supports the DTLS protocol to provide
transport layer security on top of UDP. At the application layer,
Contiki-NG supports the Constrained Application Protocol (CoAP).
In addition, the implementation of the network management proto-
col SNMP relies on UDP. On top of TCP, one can use either MQTT
or HTTP as application layer protocols.

Each of these protocol implementations can be a possible attack
target for anyone who has the capability to inject packets into it.

One important point to keep in mind for our work is that, when
fuzz testing the Contiki-NG network stack, one has to consider its
layered architecture when deciding where to inject packets. One
option is to inject all packets at the 6LoWPAN layer or lower, but
this entails that a packet will have to pass a large number of checks
of different headers before it reaches an upper layer. Hence, the
fuzzers will have difficulty in achieving an adequate coverage in the
protocol implementations at the upper layers of the network stack;
e.g., in the CoAP implementation. Alternatively, one can inject
packets directly into the protocol implementation of interest for
more focused fuzz testing, at the expense of not covering key parts
of the network stack. In our experiments, we focus on injecting
packets at the IPv6 and 6LoWPAN layers, which are the lowest



ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

points of the stack where significant packet processing occurs, and
where input data has the potential to reach code in a variety of
protocol implementations on top of these layers.

3 GROUND TRUTH EXPERIMENTS

In this section, we evaluate the eight fuzzers on the set of eighteen
vulnerabilities that we have detected and fixed using fuzz testing.
We run fuzzing campaigns on Contiki-NG and compare fuzzing
tools’ performance to answer the first three research questions.

Fuzzer Selection and Some Experiences. We have selected fuzzers
to include in our evaluation as follows. In fall 2018, we started
fuzzing Contiki-NG’s 𝜇IP layer using AFL. We continued using
AFL on 𝜇IP, with moderate success (we discovered the first three
vulnerabilities of Table 2), until we hit a wall and no more bugs
could be found with the test harnesses we were using at the time.
We therefore turned our attention to hybrid fuzzers that, at least
in principle, are more powerful, and tried out Angora and Driller.
However, we experienced usability issues with Driller, and quickly
abandoned it for QSym. Using Angora and QSym, we were able to
trigger more bugs. Up to that point, all fuzzers were run on the
laptops and servers of our group, and maintenance was painful
whenever software on these machines was updated. In spring 2020,
we created Docker containers for running the fuzzers, which al-
lowed us to quickly include Intriguer in our tool set. In the fall
of 2020, we learned about MOpt and SymCC, but it was easy to
include them in our toolset, because it had evolved further at that
point. This turned out to be a good choice, because we were able
to discover one more, hard to trigger and reproduce, Contiki-NG
vulnerability using them.

We remark at this point that the set of fuzzers that we use has a
small common intersection with those used in three recent papers,
which also propose benchmark platforms for evaluating fuzzers
(Magma [11],UniFuzz [13], and one based on FuzzBench [2]). More-
over, these three papers and ours investigate different sets of re-
search questions, but, even in the common ones, their conclusions
slightly differ from ours. More on this in §5.

Platform and Configuration. Our artifact runs the fuzzers within
Docker containers. The configurations these use are shown in Ta-
ble 1. To run trials in parallel, 20 to 30 at a time, the machine we
used for the measurements we report is a server with two Intel(R)
Xeon(R) Platinum 8168 CPUs (2.70GHz with 24 physical cores each,
i.e., a total of 48 physical cores / 96 with hyperthreading) and 192GB
of RAM running Debian 10.7. For all the trials, two instances of AFL
(MOpt-AFL forMOpt) are running using AFL parallelization mode.
More precisely, every AFL orMOpt-AFL trial runs two processes,
Honggfuzz runs with two threads in its thread pool, and every
hybrid fuzzer runs three processes (two instances of AFL plus one
more for the symbolic/concolic execution component).

For MOpt, we set MOpt-AFL’s pacemaker mode option to -L 0

for all trials. (We picked this setting, which controls the time after
which AFL’s deterministic mutations are disabled, because it gave
the best performance after multiple 24-hour trials.) Due to bad
detection of free CPUs from AFL within our configuration, we
disabled AFL’s CPU confinement. AFL’s execution speed is around
1, 200 execs/sec. We also used RAMDisk to avoid slow disk accesses.

Table 1: Docker image configurations for our experiments.

Tool Version Ubuntu OS AFL Instrumentation Compiler

AFL-gcc 2.57b 16.04 LTS afl-gcc gcc 5.4.0
AFL-cf 2.57b 16.04 LTS afl-clang-fast clang 3.8.0
MOpt e3e6936 16.04 LTS afl-gcc gcc 5.4.0
Honggfuzz 0b4cd5b1 20.04 LTS clang 8.0.1

Angora 1.2.2 16.04 LTS afl-gcc gcc 5.4.0
QSym 4fa4363 16.04 LTS afl-gcc gcc 5.4.0
Intriguer 4d41176* 16.04 LTS afl-gcc gcc 5.4.0
SymCC e29fc5a 20.04 LTS afl-clang clang 10.0.0
* We have fixed a disk space issue for Intriguer.

Seeds. We use two entry points to inject fuzzed data packets
at different layers in the Contiki-NG network stack: one to the
𝜇IP module and one to the 6LoWPAN module. As a result, we use
two different sets of seeds. However, for a given entry point, all
fuzzers and all trials use the same set of seeds. For 𝜇IP, the seeds
are built from four well-formed IPv6 packets. They all contain a
valid IPv6 header followed by different optional extension headers
(Hop-by-hop, Routing, or ICMPv6) with possible options (such as
RPL configuration). For 6LoWPAN, we follow the corresponding
standard [22] and encapsulate IPv6 packets after 6LoWPAN’s lower-
layer headers. This provides a valid input for the 6LoWPAN entry
point and still covers what the 𝜇IP seeds cover. Another possibility
is to generate inputs with 6LoWPAN compression or fragmentation
header. However, for this paper, we want to generate simple and
valid seeds to evaluate how well fuzzing tools explore different
headers of each protocol. Then, we use the AFL’s corpus and test
case minimization tools (afl-cmin and afl-tmin) to optimize the sets
of seeds for AFL—removing redundant inputs and trimming the
files—and use the resulting sets to initialize our fuzzers.

Benchmark Trials andNumbers Reported. All the timeswe present
in the tables of this section are averages of a total of ten 24-hour
trials for each fuzzer. Each fuzzer trial specifically targets a singleton
set consisting of some particular ground-truth bug (e.g., uIP-len).
After each 24-hour trial finishes, a post-processing script checks
all “unique crashes” and hangs detected by the fuzzer, validates
whether some of them correspond to a bug in the target set and, if
so, extracts the earliest time that each such bug was exposed. All
such times from ten trials are then averaged and presented in tables
of this section as mean time-to-exposure. We use the � symbol to
denote that a bug was not detected in any of the ten trials. In the
cases where non-trivial bugs are exposed consistently (i.e., in all ten
out of ten trials) by some fuzzers, and this happens fast or in time
that is considerably shorter than that of most other fuzzers that
also consistently expose these bugs, we highlight those times.

Design of “Ground Truth” Benchmark Suite. Our benchmark suite
consists of selected vulnerabilities we discovered in the code base of
Contiki-NG using fuzzing. The vulnerabilities are listed in Table 2;
we invite the reader to read its detailed caption at this point.

Let us provide some additional information about these vulnera-
bilities and our experiences. We started with fuzzing Contiki-NG’s
code base, at its IPv6 network layer, with 𝜇IP as entry point us-
ing AFL 2.36. Even on the first day, AFL exposed the first crash
(uIP-overflow) within the first half hour of fuzzing. However, after
running for about two hours, AFL also reported around 100 more
“unique crashes” which turned out to have the same culprit as the

https://github.com/puppet-meteor/MOpt-AFL/commit/e3e6936dc83b305c4e10ddd9da21e91b43b05aaf
https://github.com/google/honggfuzz/tree/0b4cd5b1c4cf26b7e022dc1deb931d9318c054cb
https://github.com/AngoraFuzzer/Angora/releases/tag/1.2.2
https://github.com/sslab-gatech/qsym/commit/4fa4363cd09d40a422efa24d359b87f849202d4a
https://github.com/seclab-yonsei/intriguer/commit/4d41176f77bc09a46a6157b83e421f2a2b4ba1ef
https://github.com/eurecom-s3/symcc/commit/e29fc5aeb58d9261ccf9fcfbb66e8680e5b91f52


So Many Fuzzers, So Little Time ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 2: Vulnerabilities selected for our experiments. Each of them is given an identifier (Id), has a pull request that fixes it

(PR♯), which in turn is associated with two Git commit SHAs before and after the fix was merged. The last four columns show

the protocol implementation where the bug was located, the CVE number assigned to it (if any), a short description of the error,

and the fuzzer that first discovered it, although this mostly reflects on when we first started using each fuzzer. Vulnerabilities

are shown in chronological order with which their fixes were merged. This order is almost identical to the chronological order

in which vulnerabilities were discovered, with two exceptions (the pairs 6LoWPAN-ext-hdr, ND6-overflow and SNMP-oob-varbinds,

SNMP-validate-input) for which the vulnerabilities were discovered in time close to each other, but in the opposite order.

Id PR♯ Commit SHAs Protocol CVE Error description Discovered by

uIP-overflow 813 a1cba56–ea6c688 uIP Integer overflows in IPv6 extension header options. AFL
uIP-ext-hdr 867 150a3fe–b5d997f uIP/RPL* Unsafe IPv6 extension header processing. AFL
uIP-len 871 b5d997f–8340735 uIP CVE-2020-13985 Unverified IPv6 header length before packet processing. AFL

6LoWPAN-frag 972 6553688–5884a12 6LoWPAN Buffer overflow in 6LoWPAN fragment reassembly. AFL + external
SRH-param 1183 beff30b–ebd4cae RPL* CVE-2021-21282 Unverified Source Routing Header (SRH) parameter. Angora + QSym

ND6-overflow 1410 f417a5f–5bfb30d IPv6 ND CVE-2021-21279 Infinite loop in ND6 due to integer wrap around. QSym
6LoWPAN-ext-hdr 1409 5bfb30d–48a3799 6LoWPAN CVE-2021-21280 Out-of-bounds write when processing external header. Angora + QSym
SRH-addr-ptr 1431 3a3dbfe–3f9a601 RPL* CVE-2021-21257 Unverified address pointer in the Source Routing Header. AFL

6LoWPAN-decompr 1482 425587d–aa6e26f 6LoWPAN CVE-2021-21410 Out-of-bounds read when decompressing packets. MOpt + SymCC
6LoWPAN-hdr-iphc 1506 0dada69–6c8373d 6LoWPAN Out-of-bounds read from hc06_ptr in a loop condition. many tools but with ASan

SNMP-oob-varbinds 1541 285cee0–457fa6c SNMP Out-of-bounds read from varbinds in a loop condition. AFL
SNMP-validate-input 1517 457fa6c–9daacb6 SNMP Bad length check for SNMP input packets. AFL

uIP-RPL-classic-prefix 1589 cd208ed–7c2d686 RPL CVE-2022-35927 Unverified DIO prefix info lengths. external
uIP-RPL-classic-div 1598 f608483–e427f48 RPL Division by zero from DIO with O lifetimes. AFL

6LoWPAN-UDP-hdr 1646 b65cfa3–92783e8 6LoWPAN CVE-2022-36052 Out-of-bounds read when decompressing UDP header. MOpt + EffectiveSan
6LoWPAN-payload 1647 92783e8–2dfbaee 6LoWPAN CVE-2022-36054 Out-of-bounds write when decompressing payload. MOpt + EffectiveSan
uIP-buf-next-hdr 1648 2dfbaee–80a5479 uIP CVE-2022-36053 Out-of-bounds read in uipbuf. MOpt + EffectiveSan

uIP-RPL-classic-sllao 1654 8512556–e58b583 IPv6 ND CVE-2022-35926 Out-of-bounds read in ND6 option headers. EffectiveSan into SymCC

first. Once we discovered its root cause, and the Contiki-NG devel-
opers applied a fix similar to that of PR#813, all “unique crashes”
simply vanished! This taught us something which by now is well-
known about fuzzers and their evaluations [11–13]. Namely, that

The number of (so called) unique crashes is not a good

measure of a fuzzer’s efficacy.

It also taught us something concerning a fuzzer’s use. Namely, that
one should stop a fuzzer—at least all those that rely on AFL—soon
after it has come upwith the first few “unique crashes.” At that point,
one should (try to) understand the crashes fuzz testing has exposed,
ideally find a fix for them (if they indeed correspond to real bugs in
the code), and re-run the fuzzer to check whether similar “unique
crashes” show up again or not. More importantly for this paper,
our experiences result in a recommendation regarding evaluations
and comparisons of fuzzers.

Benchmark suites for evaluating fuzzers should try to

also capture the process of how bugs are detected and

fixed in real software, where often eliminating some

bug(s) makes exposition of other bugs a more difficult

and time consuming process.

One natural advantage of such a fuzzer benchmark suite is that it
comes with a good definition of what constitutes a bug, and a more
accurate indication of how many bugs it contains: the number of
pull requests (PRs) that fix a set of related crashes or hangs.

We therefore created a ground truth benchmark suite for fuzzers
that comprises the evolution of some non-trivial software, in our
case Contiki-NG. To that effect, our ground truth suite, currently
containing 𝑘 = 18 known vulnerabilities, comes with scripts that
allow to check out a Git history point of Contiki-NG’s development
where the first 𝑛 vulnerabilities are fixed (i.e., not there) and the
remaining 𝑘 − 𝑛 are still present in its code base. Other scripts

check whether a particular vulnerability of interest is exposed by a
fuzzer during a trial that resulted in crashes or hangs. In short, our
ground truth suite allows for fuzzing experiments focused on some

particular vulnerability. This is exactly what we evaluate in this
section: whether fuzzers expose the vulnerability that we are after,
and if so how consistently and fast they do this.

Before presenting the results of our evaluation, we mention one
additional feature of our ground truth suite, which is related to
Contiki-NG’s layered architecture. Using only 𝜇IP entry point with
the RPL-Lite routing protocol did not expose many vulnerabilities.
In fact, it resulted in only three PRs; these are shown in the first three
rows of Table 2, which fixed vulnerabilities in the code of 𝜇IP and
RPL protocols. However, by starting the fuzzing at a different layer,
namely 6LoWPAN, and changing Contiki-NG configuration, we
managed to expose and fix fifteen more vulnerabilities. Finally, note
that 6LoWPAN-hdr-iphc and the last four vulnerabilities in Table 2
were discovered by augmenting fuzzing campaigns with sanitizers.

Vulnerabilities Using 𝜇IP as Entry Point. Table 3 shows results of
how effective these fuzzers are in exposing bugs in the code of 𝜇IP.

For the first two vulnerabilities, we notice the following: (i) The
first of them (uIP-overflow) is exposed by seven of the eight fuzzers
and the second (uIP-ext-hdr) is exposed by all fuzzers consistently.
(ii) Two of the fuzzers (MOpt and SymCC) are clear winners here in
terms of the average time it takes to expose these bugs. (iii) SymCC
outperforms QSym, which it uses as a symbolic backend, by a factor
similar to the one reported in the SymCC paper [21]. (iv)MOpt’s
strategy for selecting mutator is particularly effective here; it clearly
outperforms the two AFL variants, which are also mutation-based
fuzzers, and comes very close to the speed that SymCC achieves.

The third vulnerability (uIP-len) is clearly more challenging.
First, no fuzzer exposes it in all ten 24-hour trials, and none exposes
it fast—or considerably faster than others—either. Second, AFL-cf

https://github.com/contiki-ng/contiki-ng/pull/813
https://github.com/contiki-ng/contiki-ng/pull/867
https://github.com/contiki-ng/contiki-ng/pull/871
https://nvd.nist.gov/vuln/detail/CVE-2020-13985
https://github.com/contiki-ng/contiki-ng/pull/972
https://github.com/contiki-ng/contiki-ng/pull/1183
https://nvd.nist.gov/vuln/detail/CVE-2021-21282
https://github.com/contiki-ng/contiki-ng/pull/1410
https://nvd.nist.gov/vuln/detail/CVE-2021-21279
https://github.com/contiki-ng/contiki-ng/pull/1409
https://nvd.nist.gov/vuln/detail/CVE-2021-21280
https://github.com/contiki-ng/contiki-ng/pull/1431
https://nvd.nist.gov/vuln/detail/CVE-2021-21257
https://github.com/contiki-ng/contiki-ng/pull/1482
https://nvd.nist.gov/vuln/detail/CVE-2021-21410
https://github.com/contiki-ng/contiki-ng/pull/1506
https://github.com/contiki-ng/contiki-ng/pull/1541
https://github.com/contiki-ng/contiki-ng/pull/1517
https://github.com/contiki-ng/contiki-ng/pull/1589
https://nvd.nist.gov/vuln/detail/CVE-2022-35927
https://github.com/contiki-ng/contiki-ng/pull/1598
https://github.com/contiki-ng/contiki-ng/pull/1646
https://nvd.nist.gov/vuln/detail/CVE-2022-36052
https://github.com/contiki-ng/contiki-ng/pull/1647
https://nvd.nist.gov/vuln/detail/CVE-2022-36054
https://github.com/contiki-ng/contiki-ng/pull/1648
https://nvd.nist.gov/vuln/detail/CVE-2022-36053
https://github.com/contiki-ng/contiki-ng/pull/1654
https://nvd.nist.gov/vuln/detail/CVE-2022-35926
https://github.com/contiki-ng/contiki-ng/pull/813


ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

Table 3: Number of times and mean time-to-exposure (HH:MM:SS) for the seven vulnerabilities in the code base of 𝜇IP.

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

uIP-overflow 10 00:17:20 10 00:35:40 10 00:03:00 0 � 10 00:53:29 10 00:23:59 10 00:49:58 10 00:01:39
uIP-ext-hdr 10 03:32:17 10 03:23:20 10 00:12:11 10 00:50:12 10 02:44:41 10 00:57:23 9 05:05:31 10 00:11:35

uIP-len 5 06:59:39 0 � 4 09:03:11 0 � 5 08:48:08 5 04:45:32 3 01:24:00 1 01:35:04
uIP-buf-next-hdr 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

uIP-RPL-classic-prefix 6 06:21:52 2 18:52:46 7 03:57:22 0 � 6 09:55:47 10 05:14:50 2 07:11:56 0 �
uIP-RPL-classic-div 7 10:46:12 6 11:09:41 8 07:35:17 4 16:52:41 4 10:54:35 5 08:05:55 3 01:25:26 6 06:00:12
uIP-RPL-classic-sllao 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

Table 4: Number of times and mean time-to-exposure for the nine vulnerabilities starting the fuzzing from 6LoWPAN.

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

6LoWPAN-frag 10 00:17:19 3 12:26:18 10 00:12:34 0 � 10 00:18:50 10 00:08:32 10 00:23:19 10 01:40:39
SRH-param 10 00:21:23 0 � 10 00:19:44 0 � 10 00:17:09 10 00:16:49 10 00:18:06 10 00:07:34

ND6-overflow 0 � 0 � 0 � 0 � 0 � 4 11:15:41 0 � 0 �
6LoWPAN-ext-hdr 6 07:13:16 1 13:11:24 10 07:52:40 0 � 9 12:58:16 7 02:36:38 7 08:54:21 3 14:56:08
SRH-addr-ptr 8 02:14:37 0 � 8 00:31:38 0 � 7 03:08:56 10 00:44:15 8 00:29:51 0 �

6LoWPAN-decompr 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �
6LoWPAN-hdr-iphc 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �
6LoWPAN-UDP-hdr 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �
6LoWPAN-payload 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

never manages to expose it. Quite likely, this is because it uses Clang
to instrument the target. A take-away lesson is that the instrumen-

tation component of a fuzzing tool can cause it to miss vulnerabilities

in addition to influencing the speed of its execution. In retrospect,
this should not come as a surprise, because vulnerabilities often
exist in code which confuses a compiler or is undefined behavior in
the language. In such cases, the compiler is allowed to do whatever
it pleases with the code; e.g., even remove it. Another way of stating
this lesson is that it is often very difficult to do fair comparisons
between different fuzzing tools because they are complex pieces of
engineering and assembly of components. For example, SymCC is
not just SymCC-QSym (i.e., a fuzzer that uses QSym as a symbolic
backend), but is more something like SymCC-QSym-AFL-Clang, and
possibly many other parts as well, all of them of particular versions.

Vulnerabilities Using 6LoWPAN as Entry Point. The second set of
our evaluation results is shown in Table 4. The first two vulnera-
bilities (6LoWPAN-frag and SRH-param) are quite easy to expose for
six of the fuzzers (AFL-gcc, MOpt, Angora, QSym, Intriguer, and
SymCC), and quite difficult or impossible for AFL-cl and Honggfuzz.
However, beyond this point, vulnerabilities become (much) more
difficult for most of the fuzzers to expose in 24-hour trials. For exam-
ple, QSym is the only tool that exposes ND6-overflow. (It is also the
fuzzer that discovered it.) The next vulnerability, 6LoWPAN-ext-hdr,
is exposed by all but one of the fuzzers. However, note that only
MOpt manages to expose it consistently. Similarly, SRH-addr-ptr
is exposed by five of the eight fuzzers —and by three of them quite
fast— but only QSym manages to detect it consistently.

The last vulnerability that we discovered without sanitizers,
6LoWPAN-decompr, is not exposed by any of the fuzzers in any of
the ten 24-hour experiments that we ran to record timing measure-
ments. For this vulnerability, we executed some more trials for all
fuzzers —some of them longer than two days— but they did not ex-
pose it either. However, as also shown in Table 2, this vulnerability
was originally discovered by bothMOpt and SymCC, without the
use of sanitizers, so at least these two fuzzers could have exposed it.
(Note that for each vulnerability of interest, we use the Git commit
SHA before the PR that fixed it was merged in the code base.)

We mention that our suites come with Proof of Vulnerability
(PoV) support, in the form of inputs that trigger crashes or hangs and
scripts to trigger them. For example, the 6LoWPAN-decompr vulnera-
bility is easily triggered when Contiki-NG’s code is instrumented
with AddressSanitizer [24].

Answers to RQ.1–RQ.3

Regarding RQ.1, our results do show some advantage of using
hybrid fuzzers in complex code bases such as Contiki-NG’s network
stack compared to mutation-based fuzzers, but do not show any
clear superiority of hybrid fuzzing techniques. We also discover that
no fuzzer is uniformly better than all the rest in terms of exposing
more vulnerabilities. Still, there are three fuzzers that stand out
among the eight we consider:MOpt, SymCC, and QSym. Besides
exposing bugs faster than the rest (RQ.2), they are the fuzzers that
expose bugs more consistently (RQ.3) among them; cf the entries
of Tables 3 and 4.

We mention that these results agree with the conclusions of the
UniFuzz paper [13], which also considers MOpt and QSym (but
not SymCC) in its evaluation and places them on top. However, it
differs from a recently published paper on fuzzing effectiveness
using FuzzBench [2], which also considersMOpt, but places AFL++
and Honggfuzz on top. Our work does not consider AFL++, so we
cannot say anything about this fuzzer, but on Contiki-NG’s code
base Honggfuzz does not perform well. We were curious about
this result and also tried Honggfuzz in configurations with many
threads in its thread pool, but the result did not change.

Let us highlight two reasons why, in our opinion, hybrid fuzzers
are not more effective on Contiki-NG’s codebase.

First, hybrid fuzzers tend to restrain themselves in doing two
things: (1) getting seeds from coverage-guided grey-box fuzzers,
and (2) applying heavier analyses to produce better mutants. Doing
so, hybrid fuzzers heavily rely on mutation-based fuzzers, and get
stuck whenever these cannot generate any new mutants. In short:

The consistency and effectiveness of a hybrid fuzzer is

dependent on the consistency and effectiveness of its

mutation-based component.



So Many Fuzzers, So Little Time ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 5: Number of times and mean time-to-exposure for the 𝜇IP vulnerabilities using AddressSanitizer instrumentation.

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

uIP-overflow 8 00:17:24 10 00:34:34 10 00:19:53 0 � 10 00:48:04 10 00:15:08 10 00:37:30 10 00:31:03
uIP-ext-hdr 10 05:15:10 10 02:30:14 10 01:20:44 10 01:11:22 10 02:17:21 10 01:53:00 10 03:33:16 10 02:38:00

uIP-len 0 � 0 � 0 � 0 � 0 � 0 � 0 � 2 11:57:49

uIP-RPL-classic-prefix 2 13:25:17 0 � 2 21:58:18 0 � 1 03:59:56 1 08:19:18 0 � 1 17:06:14
uIP-RPL-classic-div 0 � 0 � 0 � 2 09:50:03 1 02:41:05 0 � 0 � 0 �

Table 6: Impact of AddressSanitizer for the vulnerabilities in the code base of 𝜇IP. The table shows performance differences

from Table 3: a positive impact is denoted with an upward arrow (▲) and negative impact with a downward arrow (▼). An
integer denotes the change in the number of trials exposing the vulnerability; for similar number of trials the time difference

is shown. A number of trials and a time denote vulnerabilities that a fuzzing tool exposed only on the sanitized code.

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

uIP-overflow ▼ 2 ▲ 00:01:06 ▼ 00:16:53 — ▲ 00:05:25 ▲ 00:08:51 ▲ 00:12:28 ▼ 00:29:24
uIP-ext-hdr ▼ 01:42:53 ▲ 00:53:06 ▼ 01:08:33 ▼ 00:21:10 ▲ 00:27:20 ▼ 00:55:37 ▲ 1 ▼ 02:26:25

uIP-len ▼ 5 — ▼ 4 — ▼ 5 ▼ 5 ▼ 3 ▲ 1

uIP-RPL-classic-prefix ▼ 4 ▼ 2 ▼ 5 — ▼ 5 ▼ 9 ▼ 2 ▲ 1
uIP-RPL-classic-div ▼ 7 ▼ 6 ▼ 8 ▼ 2 ▼ 3 ▼ 5 ▼ 3 ▼ 6

An idea that follows naturally from this observation is that hy-
brid fuzzers can consider integration with multiple mutation-based
fuzzers to mitigate this dependency.

Second, the symbolic/concolic execution component of a hybrid
fuzzer focuses on generating mutants that penetrate new code
blocks or explore new paths (i.e., on increasing coverage) rather
than mutants that have increased changes to detect more bugs.

Regarding this second point, sanitizers can in principle aid a
fuzzer’s dynamic analysis to expose difficult to find bugs. To investi-
gate this point, we augment our fuzzing experiments with sanitizer
instrumentation in the next section.

4 IMPACT OF SANITIZERS

Sanitizers are dynamic bug-finding tools that analyze a single pro-
gram execution using different types of instrumentation. In theory,
sanitizers can significantly increase the defect detection capability
of fuzzers [23, 25]. On the other hand, sanitizers impose a non-
negligible execution overhead, due to code instrumentation. Thus,
sanitizers represent a trade-off as far as fuzz testing is concerned,
since fuzzing tools rely on their high execution speed (esp. com-
pared to other testing techniques such as symbolic execution) to
be able to execute the SUT with a large number of inputs.

In this section, we investigate RQ.4. To answer that question, we
evaluate the tools on the same set of vulnerabilities using two sani-
tizers: AddressSanitizer [24] (ASan) and Effective Type Sanitizer [7]
(EffectiveSan). More precisely, we add sanitizer instrumentation
during the compilation of the coverage-guided, grey-box targets
(i.e., the binaries used by AFL andMOpt). Then, as in §3, we run ten
fuzzing campaigns for every tool feeding them those augmented
targets. Following the usual methodology when fuzzing, we config-
ure the sanitizers to crash whenever they detect a suspicious input,
which consequently alerts the fuzzer of the error.

As in the experiments of §3, we report the number of trials
exposing a witness with the mean time-to-exposure (TTE). To ease
the comparison between fuzzing without and with the aid of a
sanitizer, we include a second table focusing on the tools’ difference
from the results in Tables 3 and 4. This table depicts an integer
if a different number of trials are exposing the vulnerability or

the added mean TTE in case of similar effectiveness. Due to space
limitations, we do not present results for cases where vulnerabilities
are not discovered with or without sanitizers (as e.g., is the case for
uIP-buf-next-hdr and uIP-RPL-classic-sllao), but these results
can be found in the paper’s artifact. For the vulnerabilities exposed
by the sanitizers only, we report the number of trials together with
the mean TTE. Finally, we denote a positive sanitizer impact, i.e.,
more trials exposing the vulnerability or a shorter mean TTE, using
upper arrows (▲). Down arrows (▼) denote a negative impact.

4.1 Fuzzing with AddressSanitizer

AddressSanitizer [24] (ASan) is a popular sanitizer adding extra
memory areas, called red zones, around memory allocations. These
red zones dynamically detect any invalid dereferences that are
pointing within such addresses. ASan’s technique is not complete
and might miss some dereferences that do not point to a red zone,
but it improves the exposure of out-of-bound memory access errors.

We investigate the impact of ASan on the fuzzing tools in ex-
posing vulnerabilities in Contiki-NG’s code base. To combine the
sanitizer with AFL’s instrumentation, we use the environment vari-
able provided by the companion scripts, passing sanitizer options to
the compiler. At runtime,ASan requires disabling the memory limit
and increasing the timeout as its initialization pre-allocates a con-
sequent chunk of memory, causing the AFL to stop. When fuzzing
the Contiki-NG’s code base, AFL reports only 100 exec/s compared
to 1 200 exec/s for the fuzzing campaigns in §3, i.e., a runtime over-
head of more than 10×. Tables 5 and 7 show the tools performance
with ASan instrumentation. The differences with Tables 3 and 4
are shown in Tables 6 and 8, respectively.

Vulnerabilities Using 𝜇IP as Entry Point. Tables 5 and 6 show a
fair impact for the two first vulnerabilities. WithASan instrumenta-
tion, AFL-gcc exposes uIP-overflow in two trials fewer than when
running without a sanitizer showing a noticeable drop. SymCC,
which is another fuzzer negatively affected by the sanitizer over-
head, now requires on average thirty minutes instead of less than
two to expose uIP-overflow. On the other hand, Intriger, Angora,
and AFL-cf expose the uIP-ext-hdr vulnerability in more trials or



ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

Table 7: Number of times and mean time-to-exposure for the 6LoWPAN vulnerabilities and AddressSanitizer instrumentation.

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

6LoWPAN-frag 9 01:39:07 8 01:06:08 8 02:19:24 0 � 10 00:28:16 10 00:31:59 10 02:03:18 10 00:40:38
SRH-param 0 � 0 � 0 � 0 � 0 � 0 � 0 � 0 �

6LoWPAN-ext-hdr 10 01:01:17 10 01:11:11 10 00:18:16 10 06:59:36 10 00:36:27 10 00:16:53 10 01:16:03 10 00:39:00
SRH-addr-ptr 0 � 0 � 0 � 0 � 0 � 0 � 0 � 4 03:37:12

6LoWPAN-decompr 10 00:03:25 10 00:03:15 10 00:01:45 10 00:00:19 10 00:02:07 10 00:02:26 10 00:03:00 10 00:01:19
6LoWPAN-hdr-iphc 9 08:38:23 10 06:21:53 10 03:19:03 10 02:00:48 8 07:57:00 8 03:32:29 9 09:28:19 9 10:04:55

Table 8: Impact of AddressSanitizer for the vulnerabilities starting the fuzzing from 6LoWPAN (differences from Table 4).

Id AFL-gcc AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

6LoWPAN-frag ▼ 1 ▲ 5 ▼ 2 — ▼ 00:09:26 ▼ 00:23:27 ▼ 01:39:59 ▲ 01:00:01
SRH-param ▼ 10 — ▼ 10 — ▼ 10 ▼ 10 ▼ 10 ▼ 10

6LoWPAN-ext-hdr ▲ 4 ▲ 9 ▲ 07:34:24 ▲ 10 ▲ 1 ▲ 3 ▲ 3 ▲ 7
SRH-addr-ptr ▼ 8 — ▼ 8 — ▼ 7 ▼ 10 ▼ 8 ▲ 4

6LoWPAN-decompr ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10
6LoWPAN-hdr-iphc ▲ 9 ▲ 10 ▲ 10 ▲ 10 ▲ 8 ▲ 8 ▲ 9 ▲ 9

faster on average, whereas the other tools have only slight slow-
downs. The impact is very negative for uIP-len. All the tools but
SymCC failed to expose the vulnerability. Notice that SymCC uses
the most recent compiler within the tools’ configurations, and we
experienced a better detection of the vulnerability with ASan and
recent Clang. None of the tools exposed uIP-buf-next-hdr, a vul-
nerability which has been discovered using Effective Type Sanitizer.
Moreover, only a few fuzzers expose uIP-RPL-classic-prefix, and
this happens only once or twice.

Vulnerabilities Using 6LoWPAN as Entry Point. Next, we look
at Tables 7 and 8. AFL-cf and SymCC expose 6LoWPAN-frag clearly
better. Interestingly, the impact of ASan is positive only for the
tools based on the Clang compiler. For SRH-param, none of the tools
exposes the vulnerability with ASan instrumentation, and later, we
see similar results for SRH-addr-ptr. Note that ASan’s red zones al-
gorithm is known to be incomplete, and such behaviors may be due
to this incompleteness. On the other hand,ASan’s impact is positive
on all the tools in exposing the three following vulnerabilities. All
tools consistently expose 6LoWPAN-ext-hdr and 6LoWPAN-decompr,
and pretty fast for the latter. Notice that the former vulnerability
is quite challenging, and none of the tools found a witness with-
out ASan for the latter. The 6LoWPAN-hdr-iphc vulnerability has
been discovered by adding ASan instrumentation to our fuzzing
campaigns, but only AFL-cf, andMOpt are exposing it consistently.

4.2 Fuzzing with Effective Type Sanitizer

Effective Type Sanitizer [7] (EffectiveSan) implements a dynamic
type checking technique that tracks type values during the exe-
cution, preserving static high-level C/C++ type information and
employing extended pointers. As a result, this sanitizer checks: 1)
whether any dynamic type matches its corresponding static type,
and 2) in case of pointers, whether the offset is within bounds.
This technique is particularly efficient to detect out-of-bound mem-
ory accesses based on object boundaries, which can happen when
accessing buffers without proper offset validation.

EffectiveSan and AFL Configuration. EffectiveSan is available as
an extension of Clang-4.0.1. Consequently, we cannot use AFL-gcc
companion scripts anymore and need to change several config-
urations of Table 1: (1) we use AFL-clang instead of AFL-gcc in-
strumentation, and (2) we set EffectiveSan’s Clang to apply both

AFL and EffectiveSan instrumentation during the compilation of
the augmented targets. (For SymCC in Ubuntu-20, we compile
Clang with gcc-4.8.2.) Unfortunately, we had an issue combining
AFL-clang-fast and EffectiveSan, due to an AFL’s global variable.
To fix the issue, we had to disable the EffectiveSan’s track of global
variables, leaving EffectiveSan with a lighter analysis. Notice that
EffectiveSan does not require heavy memory allocations, and AFL
can fuzz the target without increasing its usual limits. As a conse-
quence, AFL reports between 100 and 500 exec/s, giving a better
throughput than when using ASan. Tables 9 and 11 (on top of the
next page) depict the tools’ performance when fuzzing with Effec-
tiveSan instrumentation. Differences with Tables 3 and 4 are shown
in Tables 10 and 12.

Vulnerabilities Using 𝜇IP as Entry Point. Compared to Table 3,
Tables 9 and 10 show impressive results. Six of the eight fuzzers
now consistently expose the three first vulnerabilities with Effec-
tiveSan, often with better average time-to-exposures than the ones
in Table 3. Furthermore, for all fuzzers except AFL-clang-fast, there
is a remarkable improvement in exposing the uIP-len vulnerability.
Like in the ASan campaigns, there is a drop in the number of trials
that expose the bugs for both vulnerabilities on the RPL-Classic
routing protocol. However, we can also notice that SymCC shows
a better exposure of uIP-RPL-classic-prefix. Notice the AFL-cf
exception; disabling the sanitizer track of global variables is appar-
ently affecting the results in this case. Finally, the tools are exposing
uIP-buf-next-hdr with EffectiveSan. However, the vulnerability is
still challenging to expose consistently, though we notice increased
effectiveness and better performance for SymCC.

Vulnerabilities Using 6LoWPAN as Entry Point. There is also good
news with the vulnerabilities in Tables 11 and 12. Almost all the
tools expose all six of the nine vulnerabilities. (Compared to Table 4
there are three vulnerabilities that still remain unexposed.) Angora
managed to expose SRH-param in only seven of its ten trials. Only
MOpt and QSym managed to expose the most challenging vulnera-
bility (6LoWPAN-frag), and did that only once, when running with
sanitizer instrumentation.

4.3 Feeding Corpora of Fuzzers to Sanitizers

In the previous experiments, we injected sanitizer instrumentation
during the compilation of the mutation-based fuzzers’ targets and



So Many Fuzzers, So Little Time ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 9: Number of times and mean time-to-exposure for the 𝜇IP vulnerabilities and EffectiveSan instrumentation.

Id AFL-clang AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

uIP-overflow 10 00:10:49 10 00:09:19 10 00:16:19 0 � 10 00:06:07 10 00:14:56 10 00:20:15 10 00:05:52
uIP-ext-hdr 10 01:03:07 10 03:35:05 10 00:24:04 0 � 10 00:42:26 10 01:15:08 10 00:35:02 10 00:24:05

uIP-len 10 00:44:24 0 � 10 00:25:34 10 04:06:35 10 02:29:14 10 02:02:46 10 02:01:25 10 00:17:42
uIP-buf-next-hdr 2 12:47:46 0 � 3 08:36:57 0 � 1 01:52:32 2 00:29:24 2 07:13:00 7 06:41:59

uIP-RPL-classic-prefix 0 � 0 � 3 13:28:30 0 � 0 � 2 04:51:57 2 13:23:10 5 03:22:02
uIP-RPL-classic-div 3 22:04:40 0 � 3 19:27:27 0 � 2 04:29:34 1 02:31:07 2 18:44:25 6 08:53:54

Table 10: Impact of EffectiveSan for the vulnerabilities in the code base of 𝜇IP (differences from Table 3).

Id AFL-gcc/-clang AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

uIP-overflow ▲ 00:06:31 ▲ 00:26:21 ▼ 00:13:19 — ▲ 00:47:22 ▲ 00:09:03 ▲ 00:29:43 ▼ 00:04:13
uIP-ext-hdr ▲ 02:29:10 ▼ 00:11:45 ▼ 00:11:53 ▼ 10 ▲ 02:02:15 ▼ 00:17:45 ▲ 1 ▼ 00:12:30

uIP-len ▲ 5 — ▲ 6 ▲ 10 ▲ 5 ▲ 5 ▲ 7 ▲ 9
uIP-buf-next-hdr ▲ 2 — ▲ 3 — ▲ 1 ▲ 2 ▲ 2 ▲ 7

uIP-RPL-classic-prefix ▼ 6 ▼ 2 ▼ 4 — ▼ 6 ▼ 8 ▼ 06:11:14 ▲ 5
uIP-RPL-classic-div ▼ 4 ▼ 6 ▼ 5 ▼ 2 ▼ 2 ▼ 4 ▼ 1 ▼ 02:53:42

Table 11: Number of times and mean time-to-exposure for the 6LoWPAN vulnerabilities and EffectiveSan instrumentation.

Id AFL-clang AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

6LoWPAN-frag 0 � 1 08:50:49 1 00:11:43 0 � 0 � 1 00:03:15 0 � 0 �
SRH-param 10 02:13:48 0 � 10 02:30:14 0 � 7 01:21:25 10 00:25:01 10 01:29:04 10 00:09:34

6LoWPAN-ext-hdr 10 00:05:03 0 � 10 00:03:35 0 � 10 00:11:24 10 00:09:04 10 00:10:14 10 00:06:12
SRH-addr-ptr 10 02:40:11 0 � 9 01:24:37 0 � 9 04:40:44 9 00:51:55 10 02:08:22 10 00:15:36

6LoWPAN-decompr 10 00:00:48 0 � 10 00:00:33 10 00:06:04 10 00:02:09 10 00:01:07 10 00:00:50 10 00:00:20
6LoWPAN-hdr-iphc 10 01:58:58 0 � 10 02:26:18 1 08:30:50 10 07:18:57 10 07:26:44 10 04:44:29 9 02:14:19
6LoWPAN-payload 10 00:10:49 0 � 10 00:04:19 0 � 10 02:00:20 10 00:41:21 10 01:00:01 10 00:15:16

Table 12: Impact of EffectiveSan for the vulnerabilities starting the fuzzing from 6LoWPAN (differences from Table 4).

Id AFL-gcc/-clang AFL-cf MOpt Honggfuzz Angora QSym Intriguer SymCC

6LoWPAN-frag ▼ 10 ▼ 2 ▼ 9 — ▼ 10 ▼ 9 ▼ 10 ▼ 10
SRH-param ▼ 01:52:25 — ▼ 02:10:30 — ▼ 3 ▼ 00:08:12 ▼ 01:10:58 ▼ 00:02:00

6LoWPAN-ext-hdr ▲ 4 ▼ 1 ▲ 07:49:05 — ▲ 1 ▲ 3 ▲ 3 ▲ 7
SRH-addr-ptr ▲ 2 — ▲ 1 — ▲ 2 ▼ 1 ▲ 2 ▲ 10

6LoWPAN-decompr ▲ 10 — ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10 ▲ 10
6LoWPAN-hdr-iphc ▲ 10 — ▲ 10 ▲ 1 ▲ 10 ▲ 10 ▲ 10 ▲ 9
6LoWPAN-payload ▲ 10 — ▲ 10 — ▲ 10 ▲ 10 ▲ 10 ▲ 10

launched fuzzing campaigns with those targets. In this final experi-
ment, we employ corpora (the good and bad inputs) generated from
the ten trials of §3 and feed these inputs to the mutation-based
fuzzers’ target augmented with sanitizers. In other words, we apply
sanitizer analyses afterward without launching a new campaign
but we use the mutants generated by a previous one (and without
sanitizer instrumentation). Consequently, for a time budget of 24
hours, we compare the method of using sanitizers within fuzzing
campaigns (henceforth denoted as Method A), as is done in §4.1 and
§4.2, against the method of using sanitizers on the output queue
generated from such fuzzing campaigns (denoted as Method B).
For the evaluation, we use the same binaries: the SUT compiled
with both fuzzer and sanitizer instrumentation. Tables 13 and 14
report selected results, showing the number of trials detecting a
witness for the hard to detect vulnerabilities of Tables 3 and 4. (The
complete set of results can be found in the paper’s artifact.)

Feeding Corpora to ASan. Table 13 shows the number of trials
exposing vulnerabilities using both methods for ASan. As a gen-
eral comment, effectiveness does change for five out of the ten
hard-to-expose vulnerabilities with ASan. Most of the tools do not
expose any of the two first vulnerabilities. That is not a surprise
for uIP-buf-next-hdr, which has been discovered by EffectiveSan.
However, regarding uIP-len, almost all the witnesses from §3 are

Table 13: Number of times the targets with AFL and ASan

instrumentation expose the challenging vulnerabilities from

§4.1. On the left, we show the trials of §4.1, i.e., during ASan

campaigns. On the right, we depict the trials exposing the

vulnerability by feeding corpora of §3 to the targets.

Id A
F
L
-
g
c
c

A
F
L
-
c
f

M
O
p
t

A
n
g
o
r
a

Q
S
y
m

I
n
t
r
i
g
u
e
r

S
y
m
C
C

uIP-len 0 0 0 0 0 0 0 0 0 0 0 0 2 1
uIP-buf-next-hdr 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uIP-RPL-classic-prefix 2 6 0 2 2 7 1 6 1 10 0 2 1 2
uIP-RPL-classic-div 0 7 0 6 0 8 1 4 0 5 0 3 0 6

uIP-RPL-classic-sllao 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SRH-param 0 0 0 0 0 0 0 0 0 0 0 0 0 10
ND6-overflow 0 0 0 0 0 0 0 0 0 4 0 0 0 0
SRH-addr-ptr 0 0 0 0 0 0 0 0 0 0 0 0 4 0

6LoWPAN-UDP-hdr 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6LoWPAN-payload 0 0 0 0 0 0 0 0 0 0 0 0 0 0

not detected anymore by adding ASan to the targets. That is sur-
prising and tells us that fuzzing with ASan can make the exposure
of vulnerabilities (when staying within a time budget) actually more
difficult due to the runtime overhead that its instrumentation adds.
Exposing the two first vulnerabilities using 𝜇IP entry point and
the RPL-Classic routing protocol is not a problem anymore follow-
ing Method B. Notice, though, that the number of trials did not



ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

Table 14: Similar to Table 13 but with EffectiveSan.

Id A
F
L
-
c
l

A
F
L
-
c
f

M
O
p
t

A
n
g
o
r
a

Q
S
y
m

I
n
t
r
i
g
u
e
r

S
y
m
C
C

uIP-buf-next-hdr 2 0 0 0 3 0 1 0 2 2 2 0 7 0

uIP-RPL-classic-prefix 0 6 0 2 3 7 0 6 2 10 2 2 5 2
uIP-RPL-classic-div 3 7 0 6 3 8 2 4 1 5 2 3 6 6
uIP-RPL-classic-sllao 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6LoWPAN-frag 0 1 1 3 1 0 0 0 1 2 0 1 0 0
ND6-overflow 0 0 0 0 0 0 0 0 1 4 0 0 0 0

6LoWPAN-UDP-hdr 0 0 0 0 0 0 0 0 0 0 0 0 0 0

change at all: adding ASan did not expose other bad inputs missed
during §3 experiments.

Let us now focus on the vulnerabilities starting with 6LoWPAN
entry point. Though there are witnesses in Table 4, SRH-param and
SRH-addr-ptr are not exposed following Method B either. Except
for SymCC, which has a more recent configuration, those behaviors
are similar to the ones we have seen for uIP-len: the ASan instru-
mentation prevents the fuzzer from exposing those vulnerabilities.

For the vulnerability SRH-addr-ptr, which is exposed better by
SymCC following Method A, we must launch the fuzzing cam-
paigns with sanitizer instrumentation to expose it. To understand
the reason, let us assume that a fuzzer has just generated an input
witnessing SRH-addr-ptr. If this input neither crashes—because the
sanitizer instrumentation is not enabled—nor provides new cover-
age, the fuzzer will discard it. Consequently, the witness is lost and
even after feeding the corpus to ASan, the tools will not expose
the vulnerability. We call this kind of vulnerability path-sensitive.
Path-sensitive vulnerabilities are interesting because they require
a good analysis during the fuzzing campaigns to be exposed.

Feeding Corpora to EffectiveSan. Table 14 depicts the number
of trials exposing the vulnerabilities of Tables 3 and 4 that were
not reported in §4.2. Surprisingly, following Method B, none of
the tools expose uIP-buf-next-hdr, even though it was originally
discovered by EffectiveSan. We have good reasons to believe that
the vulnerability is path-sensitive (like SRH-addr-ptr with ASan,
its witnesses are discarded by the coverage-guided grey-box com-
ponent). With the exception of uIP-RPL-classic-sllao, the tools
expose better the vulnerabilities on the code of RPL-Classic rout-
ing protocol. Also, first running standard fuzzing campaigns and
then feeding the corpus to EffectiveSan makes the tools expose
uIP-RPL-classic-prefix and uIP-RPL-classic-div in almost all the
cases. The uIP-RPL-classic-sllao vulnerability is still undetected
due to a conflict with AFL instrumentation. Indeed, only after run-
ning the same files with EffectiveSan instrumentation, could we
expose uIP-RPL-classic-sllao witnesses.

Let us now look at 6LoWPAN vulnerabilities, in particular the
6LoWPAN-frag one, which is hardly exposed even followingMethod B.
In fact, due to EffectiveSan, most of the previous witnesses are still
crashing after the fixes. Hence, it is much more difficult for the
fuzzers to find an input fixed by the 6LoWPAN-frag pull request. This
case highlights the potential conflicts other bugs have on expos-
ing a specific vulnerability even with a heavier analysis. For the
last two vulnerabilities, there are no surprises: QSym still exposes
ND6-overflow in four of the ten trials, and none of tools exposes
6LoWPAN-UDP-hdr.

Answer to RQ.4

From our experiments, we find that, overall, ASan and EffectiveSan
pay off for their overhead. Sanitizers are essential for exposing five
vulnerabilities that cannot be detected without sanitizer use, and
the eight tools expose Contiki-NG vulnerabilities more consistently.
Furthermore, we see that using sanitizers afterward can expose deep
vulnerabilities, but not path-sensitive ones. The tools expose the
latter only during fuzzing campaigns with sanitizer instrumentation
enabled. This point should motivate the fuzzing community to
improve fuzzers’ analyses during target execution.

As a last comment, note that what we do not know whether
Contiki-NG’s code base at the point where the last vulnerability we
have detected (uIP-RPL-classic-sllao) is fixed does not contain
any other vulnerabilities that the fuzzers and sanitizers we have
used so far cannot expose. On the other hand, we see this as a
positive feature and an opportunity to expand our ground truth
suite with more vulnerabilities and more fuzzing tools in the future,
especially more powerful ones than the ones we have selected for
this paper.

5 RELATEDWORK

In recent years, several efforts have been made to evaluate and
compare the performance of different fuzz testing tools on real-
world software. In this section, we cover some related work on
fuzzer benchmark suites and comparative evaluations of fuzzers.

Commonly Used Benchmark Suites. LAVA-M [6] and the DARPA
Cyber Grand Challenge (CGC) [3] benchmark suites are the first
to propose a common set of buggy software for evaluating fuzzers.
LAVA-M automatically injects numerous out-of-bounds memory
accesses into programs in coreutils-8.14. However, all bugs are
triggered by “magic value” comparisons, which does not accurately
represent the complexity and diversity of software bugs encoun-
tered in the real-world. The DARPACGC bug suite proposes a wider
range of bug types, but its synthetic programs are relatively simple
and small. In contrast, our work offers a ground truth benchmark
suite for fuzzers using the Contiki-NG network stack code base.
We built that suite from real vulnerabilities, which correspond to
several different types of software errors. All the bugs come with
crashing inputs (aka proof of vulnerability), fixes that correct them,
and capture different time points in the evolution of Contiki-NG’s
code base. Also, our suite comes with bugs that have a natural pro-
gression in the level of difficulty to detect them, something which
is missing in all existing benchmark suites for evaluating fuzzers.

Google FuzzBench [10], previously Google Fuzzer Test Suite [9],
is an online service to evaluate fuzzers. FuzzBench proposes an easy
integration of new fuzzers together with a periodic evaluation of
them on a set of benchmarks. The service makes it easier for fuzzer
developers to evaluate some performance aspects of their tools, but
reports only code coverage statistics which, although indicative,
overapproximate bug coverage and are insufficient to compare the
effectiveness of different fuzzing techniques and tools (i.e., a fuzzer
should not only reach the statement where a bug exists, but it also
needs to expose that bug).

Two recent efforts, running concurrently with our work, have
proposed benchmarking platforms with different characteristics,
both between them and from the suite we have put forward.



So Many Fuzzers, So Little Time ASE ’22, October 10–14, 2022, Rochester, MI, USA

UniFuzz. The first effort, UniFuzz, offers a “holistic and prag-

matic metrics-driven platform for evaluating fuzzers,” currently in-
corporating numerous existing fuzzers and 20 real-world programs.
Clearly it is the result of significant effort, and provides a platform
which is much broader than ours. Similarly to what we do, UniFuzz
comes with support for Docker containers to easily reproduce ex-
periments and to add new fuzzers if desired. However, unlike our
suites, UniFuzz triages a fuzzer’s observed crashes by mapping
crash stack traces to known CVEs, which is sometimes problematic
in our opinion, and does not explicitly specify the number of bugs a
fuzzer is expected to find (i.e., the UniFuzz suite lacks ground truth
knowledge). It is also unclear whether UniFuzz allows for trials
that focus only on specific (subset of) bugs. Finally, UniFuzz does
not allow to test the evolution of the target programs, an aspect
we consider important in fuzzer comparisons (e.g., for determining
fuzzers that stop being effective beyond some particular point).

The UniFuzz paper [13] evaluates eight fuzzers (AFL, AFLFast,
Angora, Honggfuzz, MOpt, QSym, T-Fuzz, and VUzzer64), i.e., has
five fuzzers in common with our evaluation. Similar to our results,
its evaluation also finds that none of these fuzzers outperforms all
the others across all target programs, but that MOpt and QSym are
in the top category, a statement that our results also corroborate.

Magma. The second effort, Magma [11], provides a “ground truth
fuzzing benchmark that enables fuzzing evolution and comparison.”

Magma incorporates a large diversity of programs and bug types.
One of its key design decisions is to forward-port pull requests that
fix bugs into the latest version of a program’s code together with
the condition to trigger them. This is a very interesting idea, which
is complementary and ‘in the other direction’ to what we do in our
ground truth suite. The bug conditions allow Magma to monitor
whether a fuzzer has triggered a bug, but was unable to detect it
(i.e., if the bug condition is satisfied but the target did not crash).
This metric nicely refines the runtime information provided by the
benchmark during fuzzing. However, not all the forward-ported
bugs have an updated proof of vulnerability, and some may not
be possible to trigger in the latest version of the program’s code.
Furthermore, the monitoring instrumentation adds restrictions on
how fuzzers should execute a target.

The Magma paper [11] evaluates seven fuzzers (AFL, AFLFast,
AFL++, FairFuzz, MOpt-AFL, Honggfuzz, and SymCC) on the
Magma suite using an extensive set of trial runs. The fuzzing tools in
common to those we use in this paper is three mutation-based (AFL,
MOpt-AFL, and Honggfuzz) and only one hybrid fuzzer (SymCC).

In contrast to Magma, in our suite we do not port the bugs into a
different context. Instead, we directly checkout to the corresponding
Git history points. Every vulnerability has a pair of associated
commits: those before and after the bug fix. Using this pair of
commits, we can ensure the bug reproducibility and provide the
exact same environment and conditions for bug detection.

Evaluation of Fuzz Testing. Klees et al. warn that missing the
fuzzer’s randomness factor leads to mis-interpretation during ex-
periments [12]. Furthermore, their paper shows the bias of using
crash-based metrics, and the authors argue that the community
should use bug metrics with statistical relevance instead. We have
followed this methodology by running our experiments ten times
with a timeout of 24 hours. Moreover, when fuzzers find the bug in

all trials, we compute the Mann-Whitney significance of the cor-
responding best time-to-exposure. However, due to lack of space,
this data is only available in our artifact.

6 CONCLUDING REMARKS

There exist at least two different ways to read this paper. The first,
perhaps less exciting one, is to view it as an experience report of
using different state-of-the-art fuzzing tools to detect vulnerabilities
in the complex code base of a widely-used OS for IoT devices, and
improve its robustness and security. In this respect, our advice to
other developers is: “use as many fuzzers as you can get your hands

to and fix, or at least try to understand, the issues that they report.”
We offer some strong evidence that, currently, no single fuzzing
tool outperforms all the others or is able to consistently expose the
bugs that exist or, worse, that itself has previously discovered. In
our opinion, this calls for research that makes fuzzers more consistent,
besides making them faster and/or more effective.

Another way to read this paper is as offering an independent
and extensive evaluation of the effectiveness of state-of-the-art
mutation-based and hybrid fuzzers on a real-world code base. It
also proposes a new benchmark suite for evaluating fuzzers, which
has special properties due to the layered-based characteristics of
Contiki-NG’s code base. Finally, it offers some new ideas on how
fuzzing tools should be evaluated. Evaluating fuzz testing tools
accurately and consistently is not an easy task, and will remain
challenging as techniques mature and get incorporated into tools
that come with more and more knobs, bells and whistles. We hope
that our benchmarking platform proves useful to researchers and
developers of the area, and that it will get extended as more vulner-
abilities are exposed in Contiki-NG’s code base.

As a final comment, we note that none of the fuzzers we have
used in this evaluation takes into account the stateful nature of
the protocols implemented in Contiki-NG’s low-power IPv6 stack.
When we started this work, stateful grey-box fuzzers were non-
existent (or still in their infancy), but since then some such fuzzers
have been developed. Extending our experiments with a set of state-
ful fuzzers and discovering whether the known bugs are exposed
faster, more consistently, or measure how many more new bugs
such fuzzers are able to expose are intesting directions for contin-
uing this work. Similarly, one can include ensemble fuzzers in a
future comparison. However, as noted in the paper’s title, there are
so many fuzzers and so little time...

ACKNOWLEDGMENTS

This research has been supported in part by the Swedish Foun-
dation for Strategic Research through the aSSIsT project and by
the Swedish Research Council through grant #621-2017-04812. We
thank the anonymous reviewers for their time and their comments.

REFERENCES

[1] AFL-clang-fast 2019. Fast LLVM-based instrumentation for afl-fuzz. https:
//github.com/google/AFL/tree/master/llvm_mode.

[2] Dario Asprone, Jonathan Metzman, Arya Abhishek, Guizzo Giovani, and Federica
Sarro. 2022. Comparing Fuzzers on a Level Playing Field with FuzzBench. In
15th IEEE International Conference on Software Testing, Verification and Validation

(Valencia, Spain) (ICST 2022). IEEE, 302–311. https://doi.org/10.1109/ICST53961.
2022.00039

https://assist-project.github.io/
https://github.com/google/AFL/tree/master/llvm_mode
https://github.com/google/AFL/tree/master/llvm_mode
https://doi.org/10.1109/ICST53961.2022.00039
https://doi.org/10.1109/ICST53961.2022.00039


ASE ’22, October 10–14, 2022, Rochester, MI, USA Clément Poncelet, Konstantinos Sagonas, and Nicolas Tsiftes

[3] Brian Caswell. 2016. Cyber Grand Challenge Corpus. http://www.lungetech.
com/cgc-corpus/.

[4] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In IEEE Symposium on Security and Privacy (San Francisco, CA) (SP 2018). IEEE,
711–725. https://doi.org/10.1109/SP.2018.00046

[5] Mingi Cho, Seoyoung Kim, and Taekyoung Kwon. 2019. Intriguer: Field-Level
Constraint Solving for Hybrid Fuzzing. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security (London, UK) (CCS ’19).
ACM, New York, NY, USA, 515–530. https://doi.org/10.1145/3319535.3354249

[6] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
William K. Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-
Scale Automated Vulnerability Addition. In IEEE Symposium on Security and

Privacy (San Jose, CA, USA) (SP 2016). IEEE Computer Society, 110–121. https:
//doi.org/10.1109/SP.2016.15

[7] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and Memory
Error Detection Using Dynamically Typed C/C++. In Proceedings of the 39th

ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 181–195. https:
//doi.org/10.1145/3192366.3192388

[8] Adam Dunkels. 2003. Full TCP/IP for 8-Bit Architectures. In 1st International

Conference on Mobile Systems, Applications and Services (San Francisco, CA, USA)
(MobiSys 2003). USENIX, 85–98. https://doi.org/10.1145/1066116.1066118

[9] FTS 2018. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite.
[10] FuzzBench 2020. FuzzBench: Fuzzer Benchmarking As a Service. https://github.

com/google/fuzzbench.
[11] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-

Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49
(Nov. 2020), 29 pages. https://doi.org/10.1145/3428334

[12] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM, New
York, NY, USA, 2123–2138. https://doi.org/10.1145/3243734.3243804

[13] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng Cheng, Kangjie Lu, and
Ting Wang. 2021. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Plat-
form for Evaluating Fuzzers. In 30th USENIX Security Symposium (USENIX Secu-

rity 21). USENIX Association, 2777–2794. https://www.usenix.org/conference/
usenixsecurity21/presentation/li-yuwei

[14] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, and Raheem
Beyah. 2019. MOpt: Optimized Mutation Scheduling for Fuzzers. In 28th USENIX

Security Symposium (USENIX Security 19) (Santa Clara, CA, USA). USENIX As-
sociation, 1949–1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

[15] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[16] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32–44.
https://doi.org/10.1145/96267.96279

[17] George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki
Tanaka, and Nicolas Tsiftes. 2022. The Contiki-NG open source operating system
for next generation IoT devices. SoftwareX 18 (2022), 101089. https://doi.org/10.
1016/j.softx.2022.101089

[18] Brian S. Pak. 2012. Hybrid Fuzz Testing: Discovering Software Bugs via Fuzzing
and Symbolic Execution. Master’s thesis. School of Computer Science, Carnegie
Mellon University. http://reports-archive.adm.cs.cmu.edu/anon/2012/CMU-CS-
12-116.pdf CMU-CS-12-116.

[19] Mathias Payer. 2019. The Fuzzing Hype-Train: How Random Testing Triggers
Thousands of Crashes. IEEE Security & Privacy 17, 1 (Jan.–Feb. 2019), 78–82.
https://doi.org/10.1109/MSEC.2018.2889892

[20] Sebastian Poeplau and Aurélien Francillon. 2019. Systematic Comparison of
Symbolic Execution Systems: Intermediate Representation and Its Generation.
In Proceedings of the 35th Annual Computer Security Applications Conference

(San Juan, PR, USA) (ACSAC’19). ACM, New York, NY, USA, 163–176. https:
//doi.org/10.1145/3359789.3359796

[21] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In 29th USENIX Security Symposium (USENIX

Security 20) (Boston, MA, USA). USENIX Association, 181–198. https://www.
usenix.org/conference/usenixsecurity20/presentation/poeplau

[22] RFC 2007. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. https:
//tools.ietf.org/html/rfc4944.

[23] Kostya Serebryany. 2016. Sanitize, Fuzz, and Harden Your C++ Code. Talk at
USENIX Enigma. https://www.usenix.org/conference/enigma2016/conference-
program/presentation/serebryany

[24] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In 2012 USENIX

Annual Technical Conference (USENIX ATC 12) (Boston, MA, USA). USENIX Asso-
ciation, 309–318. https://www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany

[25] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per
Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In IEEE Symposium

on Security and Privacy (SP 2019). IEEE, USA, 1275–1295. https://doi.org/10.1109/
SP.2019.00010

[26] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Gio-
vanni Vigna. 2016. Driller: Augmenting Fuzzing through Selective Sym-
bolic Execution. In 23rd Annual Network and Distributed System Secu-

rity Symposium (San Diego, CA, USA) (NDSS 2016). The Internet Society,
16 pages. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/
09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

[27] Robert Swiecki. 2010. Honggfuzz. https://honggfuzz.dev/.
[28] The Clang Team. 2014. UndefinedBehaviorSanitizer. https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html.
[29] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:

A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th

USENIX Security Symposium (USENIX Security 18) (Baltimore, MD, USA). USENIX
Association, 745–761. https://www.usenix.org/conference/usenixsecurity18/
presentation/yun

[30] Michał Zalewski. 2013. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.

http://www.lungetech.com/cgc-corpus/
http://www.lungetech.com/cgc-corpus/
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3319535.3354249
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/1066116.1066118
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/96267.96279
https://doi.org/10.1016/j.softx.2022.101089
https://doi.org/10.1016/j.softx.2022.101089
http://reports-archive.adm.cs.cmu.edu/anon/2012/CMU-CS-12-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2012/CMU-CS-12-116.pdf
https://doi.org/10.1109/MSEC.2018.2889892
https://doi.org/10.1145/3359789.3359796
https://doi.org/10.1145/3359789.3359796
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc4944
https://www.usenix.org/conference/enigma2016/conference-program/presentation/serebryany
https://www.usenix.org/conference/enigma2016/conference-program/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1109/SP.2019.00010
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://honggfuzz.dev/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Contiki-NG Network Stack

	3 Ground Truth Experiments
	4 Impact of Sanitizers
	4.1 Fuzzing with AddressSanitizer
	4.2 Fuzzing with Effective Type Sanitizer
	4.3 Feeding Corpora of Fuzzers to Sanitizers

	5 Related Work
	6 Concluding Remarks
	Acknowledgments
	References

