
Parallel Graph-Based Stateless Model Checking

Magnus Lång and Konstantinos Sagonas

Department of Information Technology, Uppsala University, Uppsala, Sweden
{Magnus.Lang,Konstantinos.Sagonas}@it.uu.se

Abstract. Stateless model checking (SMC) is an automatic technique with low
memory requirements for finding errors in concurrent programs or for checking
for their absence. To be effective, SMC tools require algorithms that combat the
combinatorial explosion in the number of process/thread interactions that need to
be explored. In recent years, a plethora of such algorithms have emerged, which
can be classified broadly in those that explore interleavings (i.e., complete se-
rializations of events) and those that explore traces (i.e., graphs of events). In
either case, an SMC algorithm is optimal if it explores exactly one representative
from each class of equivalent executions. In this paper, we examine the paral-
lelization of a state-of-the-art graph-based algorithm for SMC under sequential
consistency, based on the reads-from relation. The algorithm is provably optimal,
and in practice spends only polynomial time per equivalence class. We present
the modifications to the algorithm that its parallelization requires and implemen-
tation aspects that allow us to make it scalable. We report on the performance
and scalability that we were able to achieve on C/pthread programs, and how
this performance compares to that of other SMC tools. Finally, we argue for the
inherent advantages that graph-based algorithms have over interleaving-based
ones for achieving scalability when parallelism enters the picture.

1 Introduction

Stateless model checking (SMC) [12] is a fully automatic technique to systematically,
and often exhaustively, test concurrent programs written in general-purpose programming
languages for bugs and other concurrency issues. The programs, which must be data-
deterministic and terminating, are executed many times under the control of a stateless
model checker, each time controlled to exhibit a different interleaving. One approach
to combating the combinatorial explosion in the number of executions that need to
be explored in SMC is called Dynamic Partial-Order Reduction [11, 2], which drives
the scheduling of the program, and systematically explores the different orderings of
dependent events, for example conflicting accesses to the same shared variable. Recently,
a new kind of SMC reduction algorithms [16, 17, 3] has emerged, which views program
executions not as schedules but as traces, i.e., labelled graphs of program events. These
new graph-based SMC algorithms are conceptually easier to understand and often simpler
to implement in an efficient way. More importantly, as we will show in this paper, they
are more amenable to effective parallelization.

In either type of SMC algorithms, the partial order relation and the traces, respectively,
divide the interleavings of the program into equivalence classes. If an algorithm explores

https://orcid.org/0000-0003-0984-4229
https://orcid.org/0000-0001-9657-0179


2 Magnus Lång and Konstantinos Sagonas

x = 1;

a = x

x = 2;

b = x

t1 t2
x = 1 x = 2

a = x b = x

x = 1

x = 2

a = x b = x

x = 1

x = 2

a = x b = x

Fig. 1: Simple program (left) and its three READSFROM-SMC traces.

exactly one representative from each equivalence class, we say that it is optimal. Non-
optimal algorithms may spend exponentially more time than optimal ones exploring
multiple different elements of each equivalence class.

SMC algorithms have low memory requirements in practice, but run in time at least
linear in the number of different concurrency behaviours of the program. In order to
apply SMC to challenging programs, users are often required to carefully constrain the
programs to minimize the number of concurrency behaviours that are independent of the
part of the program they want to test. Having the ability to scale SMC algorithms using,
for example, the nowadays abundant availability of multicore machines could allow
users to apply stateless model checking more frequently, or to even more challenging
programs. Last but not least, we hold that it is particularly desirable to parallelize optimal
SMC algorithms, as the slowdown of non-optimality could easily trump the speedup
gained by parallelization, no matter how powerful a platform one uses.

One example of an optimal graph-based SMC algorithm is the recently proposed
READSFROM-SMC algorithm of Abdulla et al. [3], hereafter abbreviated RF-SMC,
which runs programs under the sequential consistency (SC) memory model. In RF-SMC,
traces consist of two types of edges: 1) “Program order”, which contains the sequencing
of operations from the program source code, but also orderings like a thread-spawn
event before the thread-start, and 2) “Reads-from”, which associates read events with
the corresponding write event from which they got their value.

As an illustration, consider the program in Fig. 1. Two threads, t1 and t2, access
a shared variable x. Each thread writes to the variable and reads from it into a local
register, a resp. b. The three traces that RF-SMC will examine are also shown in the
figure. Program order is drawn with black arrows, and Reads-from with green. We can
see that either both threads read their own writes, or both threads read the same write
(from t1 resp. t2). When RF-SMC explores the example program, it starts by running
an arbitrary interleaving of the program events and constructs the corresponding trace.
Let us assume that it is the first trace in Fig. 1. By analyzing the reads in this trace, the
algorithm discovers that the source writes can be changed, leading to the two other traces,
which it then proceeds to run, one at a time. They too will be analyzed, but will only
lead back to the initial trace. Here, there is an opportunity to parallelize the algorithm by
running and analyzing the second and third trace concurrently.

In this paper, we present PAR-RF-SMC (Sect. 4), a parallel version of the RF-SMC
algorithm (Sect. 3), as well as an implementation on top of NIDHUGG and the changes
that were needed to make the implementation parallel (Sect. 5). We experimentally
evaluate its performance and scalability in Sect. 6. The paper ends by reviewing related
work (Sect. 7) and some concluding remarks.



Parallel Graph-Based Stateless Model Checking 3

2 READSFROM-SMC by Example

Let us explore in depth how RF-SMC operates, using the program in Fig. 1 as an
example. The algorithm represents an execution as a sequence of events. Each event
records a side-effect of a program statement, such as a read or a write of a shared variable.
There are two write events here x=1 and x=2, denoted e1 and e2. Read events record
from which write event they read (the rf relation). The initialization of shared variables
(x in the example) is also represented as write events, but we will omit them for brevity.

The goal of the algorithm is to explore all the execution graphs of the program, which
we call traces. We represent a trace by a linearization of its events. For example, we
may represent the first trace in Fig. 1 by x=1 a=xe1 x=2 b=xe2 , where a=xe1 denotes
the event where a=x reads from e1. Note that these linearizations are not necessarily
executions; i.e. read events do not necessarily read from the most recent write event.

To structure the exploration, RF-SMC maintains traces in an exploration tree.
Branches of this tree are gradually pruned, achieving low memory consumption in
practice, but in this section, for simplicity, we will show complete exploration trees.

The algorithm starts by running an arbitrary execution, and acquires its corresponding
trace. Let’s assume it is x=1 a=xe1 x=2 b=xe2 . The exploration tree is initialized with
the first trace. In Fig. 2, it is shown as the leftmost trace, τ1. The algorithm then explores
if any if the reads in this trace can have their source writes changed. First, it considers if
b=x could have read from e1 instead, and generates a trace prefix x=1a=xe1 x=2b=xe1 .
In general, it may not always be possible to have read from this new source. In order to
test it, RF-SMC employs a procedure called GETWITNESS (Sect. 3.1). This procedure
will either report that the change would violate SC-consistency, or produces a witness,
an execution in which that source is realized. In this case, the witness shown in the
lower box in Fig. 2 is returned, and RF-SMC inserts the prefix in the exploration tree
to create a new b= xe1 node, and associates it with the witness. Next, it considers if
a=x could read from e2. For this, the prefix x=1 a=xe2 would not be self-contained,
since e2 : x=2 is not included, so the missing event(s) are appended to create the prefix
x=1 a=xe2 x=2. Again, note that the ordering of a linearization of a trace only needs
to preserve program order. This prefix will also be found to be consistent, so this prefix,
and its witness are inserted into the exploration tree, whose state at this point is as in the
left of Fig. 2.

The sequential algorithm could in principle continue with either of these two wit-
nesses, but will pick the leftmost one for space reduction reasons. Starting from the
b=xe1 node, the algorithm takes the witness out of the tree, extends it to a complete
execution, and adds any newly found nodes under b=xe1 . In this case, the witness was
already a complete execution. The algorithm then again looks for new sources for the
read events in the trace. However, this time it finds that both the b=xe2 and a=xe2 nodes
already exist in the exploration tree, and so does nothing. Last, it backtracks to the wit-
ness for a=xe2 . This time, the execution is not complete and a final b=xe2 event is added
to the end of the tree, to create the tree shown in the middle of Fig. 2. Once more, the
algorithm will consider if any reads-from sources can be changed. For a, a=xe1 is still
in the tree, but for b, the algorithm will generate the trace prefix x=1 a=xe2 x=2 b=xe1 .
(Note that this does not correspond to the b=xe1 node already in the tree.) However, this
trace is not consistent, as, under SC, there is no way to interleave the program statements



4 Magnus Lång and Konstantinos Sagonas

x=1

a=xe1

x=2

b=xe2

τ1

b=xe1

x=2
x=1
a=1
b=1

a=xe2

x=2

x=1
x=2
a=2

x=1

a=xe1

x=2

b=xe2

τ1

b=xe1

τ2

a=xe2

x=2

b=xe2

τ3

�

x = 1 x = 2

a = x b = x

x = 1

x = 2

a = x b = x

x = 1

x = 2

a = x b = x

� 

� ₁

₂ ₃

Fig. 2: Exploring the program of Fig. 1: (left) the first trace and two witnesses from
it, shown in green. (middle) the tree of traces after the full exploration. (right) the
“discoverability” relation of the three traces: there is an edge from trace τ to trace τ ′ if τ ′

is discoverable from τ . This affects available concurrency.

so that both a reads 2 and b reads 1. Thus, no more nodes are inserted into the exploration
tree, and the algorithm terminates at this point.

As we can see, most of the algorithm is agnostic to the order that the newly found
traces are explored. The only point where the logic differs is when the exploration tree
is checked to see if a certain node already exists. We may further note that the only
purpose of this check is to avoid redundant work, as the witness or lack thereof would be
identical to that found the last time that trace prefix was checked. Simplifying slightly,
the exploration of traces can be compared to exploration of a strongly connected digraph,
where the set of all nodes is found by computing the neighbour sets of known nodes.
Then, it should be clear why an algorithm on this form is parallelizable. Any time several
new traces are discovered, these could in principle be explored in parallel.

The rightmost part of Fig. 2 shows this digraph of traces as induced by this example.
If trace τ1 is explored first, traces τ2 and τ3 may be explored in parallel. However, if
exploration starts with trace τ2 or τ3, the remaining two traces can only be explored
sequentially. Thus, the scheduling decisions made during arbitrary exploration can affect
the available concurrency.

3 Sequential READSFROM-SMC

In this section, we review RF-SMC [3], a sequential SMC algorithm which optimally
explores the complete consistent traces of a given concurrent program. The exploration
algorithm is centered around a test GETWITNESS for checking whether a given trace is
consistent under SC, described in Sect. 3.1.

For a read event eR, let eR.src be the write event that it reads from, and for any read
or write event e, let e.var be the variable, or memory address, that is accessed. Recall
that traces are labelled graphs represented by some linearization. We say that two traces
τ and τ ′ are equivalent, denoted τ ≡ τ ′, if they are linearizations of the same graph. For
a trace τ , let ≤τ be the relation containing all of the edges labelled “program order”,
and rf be the relation containing all edges labelled “reads-from”. Define a cut of τ

to be a subsequence τ ′ of τ such that whenever e and e′ are events in τ , such that τ ′



Parallel Graph-Based Stateless Model Checking 5

Algorithm 1: RF-SMC.

1 RF-SMC(τ,E)
2 extend E to a complete execution E · Ê where each event of Ê is unmarked
3 τ ′ := τ · Ê
4 for each read event eR ∈ Ê do schedules(pre(τ ′,eR)) := /0
5 for each eR,eW ∈ τ ′ : eW .var = eR.var and eW ̸= eR.src and
6 (eR ∈ Ê or eW ∈ Ê) and unmarked(eR) and
7 MAYREAD(τ ′,eR,eW ) do
8 τ ′′ := pre(τ ′,eR)
9 π := predecs(τ ′,eW )∩post(τ ′,eR)

10 σ := eR[src := eW ] ·mark(π)
11 E ′′ := GETWITNESS(τ ′′ ·σ ,E · Ê)
12 if E ′′ ̸= ⟨⟩ and ¬∃⟨σ ′,−⟩ ∈ schedules(τ ′′) : σ ′ ≡ σ then
13 add ⟨σ ,E ′′⟩ to schedules(τ ′′)
14 for each read event eR ∈ Ê starting from the end do
15 τ ′′ := pre(τ ′,eR)
16 for each ⟨σ ,E ′′⟩ ∈ schedules(τ ′′) do RF-SMC(τ ′′ ·σ ,E ′′)
17 erase schedules(τ ′′)

contains e and e′ [≤τ ∪ rf]∗ e, then τ ′ also contains e′. That is, a cut is closed under
causal dependencies (in the sense of ≤τ ∪ rf). Note that a cut is also a trace.

For a trace τ and an event e ∈ τ let

pre(τ,e) denote the prefix of τ up to, but not including, e;
post(τ,e) denote the suffix of τ after, but not including, e;
predecs(τ,e) denote the minimal cut of τ which contains e, i.e., the set of events

(including e) on which e is causally dependent.

As an example, if τ is the trace τ3 in Fig. 2, i.e., τ := x=1 a= xe2 x=1 b= xe2 , then
predecs(τ,b=xe1) is x=1 x=2 b=xe2 .

Algorithm 1 gives the pseudocode of RF-SMC(τ,E), where τ is an SC-consistent
trace and E is an execution and a witness for τ . Exploration begins with a call RF-SMC(⟨⟩,⟨⟩).

An important element in RF-SMC is to analyze an explored trace to see whether
another trace can be formed by changing the source of one of its read events. In order to
explore every consistent combination of sources for all the reads in the program exactly
once, the reads are organized in the exploration tree, as shown in Sect. 2. For this to be
sound, the order of read events in the traces must be preserved throughout the exploration.
However, sometimes read events must be “lifted” because they are injected in the causal
history of a prior read event when its source is changed. The algorithm must not explore
alternative sources for lifted read events, or the algorithm might explore redundant traces,
and even be unsound. To avoid this, we extend the representation of events with a field
whose value is either ⊤ or ⊥. When ⊤, we say that the event is marked; when ⊥, that
it is unmarked. For a sequence π of events, let mark(π) be π but with each element
marked. By marking any events that are “lifted” in the exploration tree, RF-SMC will
not analyse any such event for alternate sources.

For some trace prefix τ in the exploration tree, RF-SMC represents the set of
children of that node by a set schedules(τ). Each element is a tuple ⟨τ ′,E ′⟩ of the child



6 Magnus Lång and Konstantinos Sagonas

trace τ ′ and a witness E ′ of its consistency. As we saw in Sect. 2, the exploration tree
serves two purposes. First, for any read event eR in a trace τ , the set schedules(pre(τ,eR))
keeps track of all read sources for eR that have been found so far. Secondly, schedules
also keeps track of what trace prefixes, with associated executions, to explore in the
future.

The algorithm is structured in three phases: i) exploration (lines 2–3); ii) new-source-
detection (lines 4–13); and iii) recursive-exploration (lines 14–17).

In the exploration phase, RF-SMC(τ,E) extends E to an arbitrary complete execu-
tion E · Ê, and its complete trace τ ′ is computed. Correctness properties are checked on
E · Ê.

In the new-source-detection phase, for every read event eR, any possibly consistent
source eW from the same trace are considered. The MAYREAD(τ ′,eR,eW ) predicate
checks whether eR reading from eW would cause a causal loop, or whether there is
another write event e′W causally after eW and before eR. This is an efficient necessary but
not sufficient check for whether eR can read from eW . If the check passes, the algorithm
will construct the trace prefix τ ′′ ·σ containing eR with the new source, as well as a
sequence π of any new causal dependencies of eR. On line 9, as an abuse of notation we
take the intersection ∪ of two sequences, and mean the subsequence of both that contain
the elements common to both sequences. Note that this is well-defined because both
sequences agree on the ordering of common elements. The trace prefix τ ′′ ·σ is fed to
the GETWITNESS decision procedure, along with the current execution E · Ê as a hint.
If it is found to be consistent, and there is no equivalent node already in the tree, it is
inserted into the exploration tree along with the witness found by GETWITNESS.

In the recursive-exploration phase, the algorithm calls itself recursively on any
consistent trace prefixes that were found by the new-source-detection phase, starting
from the bottom of the tree. Note that the recursive calls to RF-SMC may add ele-
ments to schedules(τ ′′). When all sources of eR have been recursively explored, the set
schedules(τ ′′) may safely be erased to keep memory use low.

The algorithm satisfies the following three properties [3]: Soundness, Completeness,
and Optimality (cf. Sect. 4).

3.1 Checking Consistency: the GETWITNESS Procedure

Let us briefly overview the GETWITNESS(τ,E) procedure. (For more details, refer to
our previous paper [3].) The procedure checks the consistency of τ , returning either a
witness or ⟨⟩. It takes an execution E as a hint for the ordering of write events to the
same variable when it cannot infer the ordering, or when any ordering is valid.

The core of the procedure is a sound but incomplete heuristic which runs in polyno-
mial time, but falls back on a sound and complete decision procedure which is polynomial
time when the number of threads is fixed [3]. The heuristic is based on the concept
of saturation. When a trace τ is saturated, the rf and ≤τ relations are extended to a
saturated-happens-before relation shb, which extends ≤τ ∪ rf by orderings that must
be respected by any witness of τ . If shb is cyclic, then τ is inconsistent.



Parallel Graph-Based Stateless Model Checking 7

3.2 Implementation

An implementation of RF-SMC is available in the tool NIDHUGG [1]. In this section,
we describe that implementation.

NIDHUGG takes C or C++ programs as input, but does its analysis on the level
of LLVM IR, produced by the Clang compiler. Executions are checked for assertion
violations and crashes, such as segmentation faults. For programs that do not terminate
in bounded time, and hence have an infinite trace space, automatic loop bounding,
sometimes called loop unrolling, can be requested by the user. As with any bounding
technique, this makes the exploration exhaustive only up to the given bound, which
means that bugs may be missed if they do not manifest in any trace within the bound.

In order to do efficient trace equivalence comparison, as needed on line 12 of Algo-
rithm 1, NIDHUGG maintains a directed graph which is the union of all (≤τ ∪ rf) graphs
for all the traces in schedules. Each node is duplicated for every possible reads-from
assignment and program-order predecessor node. Insertions are interned, which means
that if, when inserting a node for some event with some predecessor set, there is already
a node for that program event with the same predecessor set, that node is reused. Thus,
to compare two traces identified by the nodes of their last events, it suffices to compare
the nodes for reference equality, which is an O(1) operation. In the source code of
NIDHUGG, this graph is called the unfolding tree.

As an optimization, in addition to the schedules sets, NIDHUGG maintains a cache of
traces that GETWITNESS has found to be inconsistent. Before querying GETWITNESS,
it checks both schedules(τ ′′) and the cache of inconsistent traces, so that consistency is
never queried for the same trace twice.

As an additional optimization, for every read event eR in τ tried in the new-source-
detection phase, NIDHUGG caches the shb graph for pre(τ ′,eR). Then, when shb is
needed for a new trace τ ′′, the longest prefix of τ ′′ for which there is an shb cached is
found and reused, adding only the missing suffix of events and re-saturating. In order to
efficiently support this use, NIDHUGG represents shb graphs using persistent immutable
data structures that provide O(1) copying and O(logn) updates.

4 Parallelization of READSFROM-SMC

In this section, we present PAR-RF-SMC, a parallel version of RF-SMC. While the
sequential version is expressed in a recursive form, PAR-RF-SMC is expressed in a
task-based form, where each task explores one trace and spawns zero or more new
tasks. Algorithm 2 shows its code. The algorithm consists of creating an initial task
PAR-RF-SMC(⟨⟩,⟨⟩), and terminates when all tasks have finished.

Recall from Sect. 3 that in RF-SMC, the global data structure schedules serves two
purposes. It keeps track of both all read sources that have been found so far for any read
event, as well as of what trace prefixes, with associated executions, to explore in the
future. In PAR-RF-SMC, the trace prefixes to explore in the future are kept as tasks and
do not need to be stored as global variables, but the set of all sources found for some
read event eR in some trace τ is still required to avoid redundant (duplicate) exploration.
Therefore, PAR-RF-SMC uses a variable attempted(pre(τ,eR)), shared by all tasks, to
keep track of this set. This is the only shared data structure.



8 Magnus Lång and Konstantinos Sagonas

Algorithm 2: PAR-RF-SMC.

1 PAR-RF-SMC(τ,E)
2 extend E to a complete execution E · Ê where each event of Ê is unmarked
3 τ ′ := τ · Ê
4 for each read event eR ∈ Ê do
5 attempted(pre(τ ′,eR)) := {pre(τ ′,eR) · eR}
6 for each eR,eW ∈ τ ′ : eW .var = eR.var and eW ̸= eR.src and
7 (eR ∈ Ê or eW ∈ Ê) and unmarked(eR) and
8 MAYREAD(τ ′,eR,eW ) do
9 τ ′′ := pre(τ ′,eR)

10 π := predecs(τ ′,eW )∩post(τ ′,eR)
11 σ := eR[src := eW ] ·mark(π)
12 if ¬∃σ ′ ∈ attempted(τ ′′) : σ ′ ≡ σ then
13 add σ to attempted(τ ′′) // atomically with the test above
14 E ′′ := GETWITNESS(τ ′′ ·σ ,E · Ê)
15 if E ′′ ̸= ⟨⟩ then spawn PAR-RF-SMC(σ ,E ′′)

16 join all sub-tasks
17 for each read event eR ∈ Ê do erase attempted(pre(τ ′,eR))

The algorithm of PAR-RF-SMC is structured in three phases: i) exploration (lines 2–
3); ii) new-source-detection (lines 4–15); and iii) cleanup (lines 16–17). As can be seen,
there is no recursive-exploration phase. Instead, new tasks are spawned for all new
sources found in the new-source-detection phase, and then the cleanup phase deletes all
the attempted sets that are no longer needed after all sub-tasks have finished.

The exploration phase is identical to that of RF-SMC. A trace prefix τ and execution
E is extended to an arbitrary complete execution E · Ê and corresponding trace τ ′, and
correctness properties are checked.

The new-source-detection phase is very similar to that of RF-SMC. The differences
lie in the changes to the global data structure attempted. The set attempted of possible
sources for a read event is initialized on line 5, just like schedules in RF-SMC. Possible
alternative sources for reads are looped over on line 6, however on line 12 we see the first
difference. Before we invoke the potentially expensive consistency check GETWITNESS,
we first check that the source eW for eR has not been previously attempted, by this or any
other thread. This ensures that the algorithm never queries consistency for the same trace
prefix twice. Thus lines 12 and 13 need to be executed atomically, for example with a
mutex guarding attempted(τ ′′). Finally, if we did not find this source in attempted(τ ′′)
and GETWITNESS found it to be consistent, we add the new trace to the work-queue on
line 15.

Just like RF-SMC, PAR-RF-SMC satisfies the following three properties:
(i) Soundness: each complete trace explored by the algorithm is a consistent trace of the
program.
(ii) Completeness: the algorithm explores all consistent traces of the program.
(iii) Optimality: each trace is explored exactly once.

Proof. We can establish these properties by observing that any run of PAR-RF-SMC
can be rearranged to produce an equivalent run of RF-SMC. Every time the sequential



Parallel Graph-Based Stateless Model Checking 9

algorithm adds an element to schedules for future exploration, the parallel algorithm
spawns a task with the same parameters, and vice versa. Every time the parallel algorithm
runs a new task, the sequential algorithm makes a recursive call to itself. In order to
be allowed to rearrange the execution of the parallel algorithm like this, we must show
that it does not affect the set of traces explored. To do that, it suffices to look at the
only source of scheduling non-determinism in the algorithm; the access to the attempted
set. When two tasks both try to insert equivalent σ ’s into attempted, whichever of them
“wins” and gets to insert into attempted is exactly the one that will run GETWITNESS
and, if σ is consistent, the one that will spawn a task to explore it. After that, the system
is in the same state, no matter which task “won”. ⊓⊔

The order in which tasks are scheduled is not specified. The algorithm keeps its
correctness and optimality properties with any scheduling, but depth-first and left-to-right
policies minimize memory use. Work-stealing scheduling policies [7], where each thread
has its own depth-first queue but when empty “steals” a shallowest task from another
thread’s queue, may also be employed to maximize locality while bounding the increase
in memory use.

As was described at the end of Sect. 2, the scheduling of the arbitrary execution
during the exploration phase on line 2 affects the amount of concurrency exposed to this
algorithm. It is possible to devise a program where under one scheduling, PAR-RF-SMC
would explore it entirely sequentially, and under another scheduling, would find all other
traces by examining the first one it explores. However, we have neither encountered nor
we expect realistic programs with large numbers of traces to behave this way.

5 Implementation

PAR-RF-SMC has been implemented in NIDHUGG. The language NIDHUGG is writ-
ten in, C++, does not have a task-based scheduler in its runtime system. There are
libraries that provide such functionality, but we chose to write our own work-stealing
task scheduler. The scheduler detects when there are no more tasks in the queue or
running, and terminates at that point. Figure 3 shows a diagram of the components of the
implementation.

In the sequential implementation, the schedules sets are stored as a stack, one entry
per read event. However, in our parallel version, the attempted sets cannot be stored in a
stack. Instead, they are organized in a tree. This tree is effectively the exploration tree, as
described in Sect. 2. Unlike the pseudocode of Algorithm 2, our implementation does not
do explicit deletions of attempted sets, as on lines 16–17. Rather, nodes in this attempted
tree are reference counted, and each task holds references to the attempted sets of all
read events in their input traces. Every node in the tree has an associated mutex which is
held during the atomic check-and-insert operation on lines 12–13. The attempted tree is
shown in the middle of Fig. 3.

We preserve the unfolding tree data structure from sequential RF-SMC, but we
extend it with mutexes that guard the child lists used for interning. For the special list of
root nodes for each thread, we employ a readers-writer mutex due to high contention and
high hit-rate (i.e., most queries for a root node return an interned node, and thus need
not modify the list). The unfolding tree is shown in the bottom of Fig. 3.



10 Magnus Lång and Konstantinos Sagonas

Worker thread

Scheduler

Unfolding tree

attempted tree

Worker threadattempted set

shb cache

Workqueue

Requests,
inserts
tasks

queries
& inserts

inserts

queries 
& inserts references

queries
& inserts

references

Fig. 3: Components of PAR-RF-SMC’s implementation in NIDHUGG.

In sequential RF-SMC, the cache of shb graphs was represented using persistent
immutable data structures [21], which had structural sharing that was memory managed
through reference counting. These were stored along the sets on the schedules stack.
For PAR-RF-SMC, we could simply move the cache into the nodes of the attempted
tree, and ensure that write-accesses were properly synchronized. Luckily, the library that
was used to provide these data structures was designed with threading in mind [21], and
offered thread-safe atomic reference counting. However, as we were benchmarking our
implementation, we found that the reference counting on these data structures became
a scalability bottleneck. We were able to lift this bottleneck by redesigning these data
structures to be more tailored to the needs of PAR-RF-SMC. In particular, because
nodes in the attempted tree are always erased after all of their children, and because an
shb graph is never updated after being installed into the cache, the memory management
can be designed so that each piece of memory has exactly one owner, and thus does not
require reference counting.

NIDHUGG supports early termination when it finds an error in the program, so
naturally we wanted to support this in PAR-RF-SMC. We achieve this by telling the
task scheduler to stop scheduling new tasks when an error is found. Thus, once all tasks
that were running at that point terminate, so does the algorithm.

6 Performance and Scalability Evaluation

In this section, we report on the performance and scalability of NIDHUGG/rfsc. To put
the numbers in perspective, we first compare its performance to three other SMC tools
that implement state-of-the-art algorithms. Subsequently, we evaluate NIDHUGG/rfsc’s
scalability on a large multicore machine.

Tools Let us briefly present the SMC tools we compare against and the algorithms they
employ. By VC-DPOR we refer to a prototype tool, based on NIDHUGG, that implements
the recently proposed Value-Centric Dynamic Partial Order Reduction algorithm [9].
This algorithm, which is sensitive to the values used by the events during an execution
rather than the read events themselves, in principle provides a coarser partitioning than



Parallel Graph-Based Stateless Model Checking 11

reads-from. However, neither the VC-DPOR algorithm nor its implementation provide
any optimality guarantees and often explore —partially— considerably more executions
than NIDHUGG/rfsc, as we will soon see. The second tool, CDSCHECKER [20], is a
high-performance stateless model checker for C/C++11 programs. It employs a variant
of the interleaving-based DPOR algorithm of Flanagan and Godefroid [11]. Although
CDSCHECKER’s implementation is well-engineered, the tool often explores a significant
number of executions that are redundant, as this DPOR algorithm is not optimal. The last
tool, GENMC [17], is a high-performance generic stateless model checker for concurrent
C programs. As its algorithm is also graph-based, GENMC is the tool which is more
similar to NIDHUGG/rfsc. However, rather than focusing on SC, GENMC provides a
framework into which consistency checks for different (weak) memory models and
program semantics can be plugged and even combined. GENMC offers a mode for SMC
under rf-equivalence, which is the default, as well as a mode that tracks the modification
order. We compare against the default mode of GENMC. In this mode, GENMC is
optimal when consistency checks are not needed for SMC under SC. It is also faster than
NIDHUGG/rfsc, both due to not checking consistency and due to being well-engineered.

Platform and Benchmarks Our benchmarking platform is a machine with two Intel(R)
Xeon(R) Platinum 8168 CPUs (2.70GHz each with 24 cores and hyperthreading, giving
a total of 48 physical/96 logical cores), has 192GB of RAM and ran Debian 10.3. All
tools used Clang version 7.0.1 to translate the C source to LLVM IR. For benchmarks,
we use the subset of programs from our previous paper [3] that can be handled by most
tools and, more importantly for this paper, whose execution time is more than a few
seconds, and hence their parallel execution makes sense. Refer to that paper for the
programs’ origin and characteristics, and to the artifact [4] of that paper for their sources.

Performance Table 1 shows the results: number of executions that the various tools
explore and the time (in seconds) that this requires.1 Since all these programs have a
scaling parameter, often the number of threads involved, we show three rows for each.
This allows to see the complexity of the different SMC algorithms and their scalability
in terms of the number of executions explored as the state space increases. We notice the
following:

– In terms of sequential performance, no tool is fastest overall. GENMC is fastest in the
last six benchmarks where it is optimal and explores the same number of executions
as NIDHUGG/rfsc. However, when it is not optimal and on circular-buffer, it is
slower roughly by an order of magnitude compared to other tools (NIDHUGG/rfsc
on fib-bench, VC-DPOR and NIDHUGG/rfsc on parker, and CDSCHECKER and
NIDHUGG/rfsc on circular-buffer).

1 In Table 1, entries n/a signify that the tool cannot handle that program; a � symbol that
the benchmark does not complete after running for more than ten hours. The circular-buffer
program contains a concurrency error which only manifests itself for parameter values ≥ 10.
The CDSCHECKER tool finds this error immediately (within the first few executions), hence
the † symbols for its circular-buffer(10) entries. The remaining three tools are not so lucky
in their search, and catch the error after exploring many executions. The parallel version of
NIDHUGG/rfsc detects this error at a point that is influenced by the distribution of tasks to
threads, which also explains the slight variation in the curve of circular-buffer(10) in Fig. 4.



12 Magnus Lång and Konstantinos Sagonas

Table 1: Performance comparison of four SMC tools in terms of the number of executions
that explore and the time (in secs) it takes to do so using one thread. The last column
shows the time performance of parallel NIDHUGG/rfsc using 48 threads.

CDSCHECKER VC-DPOR GENMC NIDHUGG/rfsc rfsc-48

Benchmark Execs Time Execs Time Execs Time Execs Time Time

fib-bench(4) n/a n/a 70937 6.93 34205 0.88 19605 1.66 0.15
fib-bench(5) n/a n/a 788940 87.69 525630 33.48 218243 21.28 0.76
fib-bench(6) n/a n/a 8543518 1182.25 8149694 3718.86 2364418 255.03 8.31

parker(12) n/a n/a 6601 0.92 69658 11.61 9407 2.24 0.13
parker(16) n/a n/a 11425 1.76 203754 43.60 21195 5.85 0.23
parker(20) n/a n/a 17561 3.09 475210 132.08 40087 12.73 0.41

circular-buffer(8) 12870 0.72 303149 50.44 12870 3.21 12870 2.51 0.15
circular-buffer(9) 48620 2.91 1147421 226.36 48620 13.58 48620 10.32 0.39
circular-buffer(10) † † 2964067 635.99 59279 19.13 59280 13.90 0.52

casrot(9) 372735 27.24 n/a n/a 8597 0.08 8597 0.89 0.14
casrot(10) 3456845 284.27 n/a n/a 38486 0.30 38486 4.28 0.23
casrot(11) 35407921 3230.99 n/a n/a 182905 1.40 182905 22.39 0.89

lastzero(11) 184331 21.15 170515 33.09 7168 0.28 7168 1.13 0.13
lastzero(13) 1888624 255.84 1192108 317.12 32768 1.25 32768 5.89 0.26
lastzero(15) 19478080 3057.60 8264353 3061.91 147456 6.25 147456 30.76 1.00

readers(13) 13311 1.75 67108864 21224.93 8192 0.59 8192 1.25 0.14
readers(15) 53247 8.10 � � 32768 2.46 32768 5.81 0.26
readers(17) 212991 37.24 � � 131072 10.94 131072 25.23 0.89

sigma(7) 509861 48.08 46232 4.97 5040 0.23 5040 0.52 0.11
sigma(8) 9057756 977.89 409112 56.27 40320 1.67 40320 4.40 0.28
sigma(9) 180337837 22286.21 4037912 668.64 362880 15.94 362880 44.17 2.17

race-parametric(5) 34904 12.41 14967 3.92 8953 1.04 8953 3.60 0.21
race-parametric(6) 372436 134.75 88432 26.38 73789 8.24 73789 30.35 0.96
race-parametric(7) 4027216 1479.37 591352 209.40 616227 69.59 616227 255.43 7.69

approxds-append(5) 390728 25.69 121883 11.36 9945 0.60 9945 1.72 0.15
approxds-append(6) 30603290 2425.28 5353219 622.40 198936 12.83 198936 41.45 1.21
approxds-append(7) � � � � 4645207 342.52 4645207 1143.28 34.86

– VC-DPOR explores significantly less executions only on one program (parker) and
only a few less on race-parametric(7). It is faster than the other tools only on parker.
In the remaining seven programs, it examines a big number of partially explored
executions —on readers even exponentially more!— and its numbers explode.

– The performance of the sequential NIDHUGG/rfsc is quite decent, but GENMC is 2.4
to five times faster than NIDHUGG/rfsc in the last four benchmarks where both tools
explore the same number of executions. Also, in the casrot benchmark, GENMC is
an order of magnitude faster. However, both tools scale similarly and better than the
other two.

– When parallelism enters the picture, NIDHUGG/rfsc becomes the fastest tool across
the board. (The last column of Table 1 shows times when executing with 48 threads,
which is the number of physical cores in our machine.) Note that this would not have
been possible if NIDHUGG/rfsc were examining a significant number of redundant
executions (e.g., similar to those that CDSCHECKER or VC-DPOR often explore).

Scalability Let us now examine the scalability of PAR-RF-SMC compared to its sequen-
tial counterpart as implemented in NIDHUGG/rfsc. Figure 4 shows speedups obtained



Parallel Graph-Based Stateless Model Checking 13

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

Threads

Sp
ee

du
p

parker

12
16
20

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

Threads

fib-bench

4
5
6

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

48

Threads

circular-buffer

8
9
10

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

Threads

Sp
ee

du
p

casrot

9
10
11

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

48

Threads

lastzero

11
13
15

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

Threads

readers

13
15
17

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24

Threads

Sp
ee

du
p

sigma

7
8
9

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

48

Threads

race-parametric

5
6
7

1 2 4 8 16 24 32 48 64 96

1

2

4

8

16

24
32

48

Threads

approxds-append

5
6
7

Fig. 4: Speedups (y-axes) obtained by running the benchmarks when varying the number
of threads (x-axes) on a machine with 48 physical/96 logical cores.

for executions of all benchmark/parameter combinations. All graphs show a very similar
picture. The speedup is almost linear up to 24 threads, which is the number of physical
cores per chip on this machine, and becomes on average 32× when using all 48 physical
cores (which are located on two different NUMA nodes). In most programs, there is a
moderate speedup increase above 32× when hyperthreading is also used.

Two more points worth noting are that i) the speedups are in general highest for the
benchmark configuration with the largest parameter value (brown lines in the plots), and
ii) the speedup obtained for the configuration with the smallest parameter value (blue
lines) often drops when using more threads than physical cores. This is due to threads not
having much work to do after some point in time during the execution of the benchmark
and/or trying to steal from other threads, causing memory traffic.

7 Related Work

To address the inherent complexity of testing concurrent software, researchers have
developed a variety of methods for finding and reproducing concurrency errors. In the
area of stateless model checking [12] numerous tools and research prototypes [19, 10,



14 Magnus Lång and Konstantinos Sagonas

1, 20, 16, 17] have been developed in the last decade, and SMC has been successfully
applied to important concurrent programs (e.g., [13, 18]).

In recent years, a wide variety of SMC algorithms has been put forward (e.g., [11,
2, 26, 22, 5, 16, 8, 6, 9, 3]) with the aim to effectively combat the combinatorial
explosion in the number of executions that must be explored. However, only a selected
few of them [2, 6, 17, 3] come with optimality guarantees, and none of them has been
parallelized. To the best of our knowledge READSFROM-SMC is the first optimal
algorithm for SMC with a parallel implementation.

Still, non-optimal Dynamic Partial-Order Reduction (DPOR) algorithms have been
parallelized in the past (e.g., by Yang et al. [25] and by Simsa et al. [23]), although the
focus of those works has been on obtaining distributed versions of these algorithms
rather than algorithms suitable for running on multicores. Also, their focus has been on
techniques and heuristics on how to avoid situations where different workers end up
exploring identical (N.B. not just from the same equivalence class!) parts of the search
space, due to the non-local nature in which interleaving-based DPOR algorithms update
their exploration frontier and the need, for scalability, to avoid a central coordinator.

Of course, distributed execution and parallelization of explicit state model checkers
has also been investigated (e.g., [24, 14, 15]). Stateful exploration is less common for
software model checking and often suffers from memory explosion.

8 Concluding Remarks

We have presented PAR-RF-SMC, the parallel version of a state-of-the-art graph-based
SMC algorithm for SC. The algorithm retains its main properties (soundness, complete-
ness and, most importantly, optimality), can be implemented with moderate additional
effort on top of its sequential counterpart, and achieves very good scalability; on average
32 times speedup on a 48 core machine. Our performance evaluation shows that parallel
NIDHUGG/rfsc currently outperforms all tools in its area, and offers the possibility for
SMC to be applied to programs which are currently very challenging.

Acknowledgments. We would like to acknowledge the work of Nodari Kankava and
Alexis Remmers for an initial prototype implementation of the algorithm which formed
the basis for PAR-RF-SMC’s implementation in NIDHUGG. This work has been partially
supported by the Swedish Research Council through grant #621-2017-04812, and by the
Swedish Foundation for Strategic Research through the aSSIsT project.

References

[1] Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.: Stateless
model checking for TSO and PSO. In: Tools and Algorithms for the Construction and
Analysis of Systems. LNCS, vol. 9035, pp. 353–367. Springer, Berlin, Heidelberg (2015),
http://dx.doi.org/10.1007/978-3-662-46681-0_28

[2] Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: A foundation for optimal
dynamic partial order reduction. Journal of the ACM 64(4), 25:1–25:49 (Sep 2017), http:
//doi.acm.org/10.1145/3073408

http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://doi.acm.org/10.1145/3073408
http://doi.acm.org/10.1145/3073408


Parallel Graph-Based Stateless Model Checking 15

[3] Abdulla, P.A., Atig, M.F., Jonsson, B., Lång, M., Ngo, T.P., Sagonas, K.: Optimal stateless
model checking for reads-from equivalence under sequential consistency. Proc. ACM
Program. Lang. 3(OOPSLA), 150:1–150:29 (Oct 2019), https://doi.org/10.1145/3360576

[4] Abdulla, P.A., Atig, M.F., Jonsson, B., Lång, M., Ngo, T.P., Sagonas, K.: Optimal Stateless
Model Checking for Reads-From Equivalence under Sequential Consistency (Oct 2019),
https://doi.org/10.5281/zenodo.3401442, artifact for the OOPSLA 2019 paper with the same
title

[5] Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.: Context-
sensitive dynamic partial order reduction. In: Computer Aided Verification. LNCS,
vol. 10426, pp. 526–543. Springer, Berlin Heidelberg (Jul 2017), https://doi.org/10.1007/
978-3-319-63387-9_26

[6] Aronis, S., Jonsson, B., Lång, M., Sagonas, K.: Optimal dynamic partial order reduction
with observers. In: Tools and Algorithms for the Construction and Analysis of Systems -
24th International Conference. LNCS, vol. 10806, pp. 229–248. Springer, Cham (Apr 2018),
https://doi.org/10.1007/978-3-319-89963-3_14

[7] Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.
Journal of the ACM 46(5), 720–748 (Sep 1999), https://doi.org/10.1145/324133.324234

[8] Chalupa, M., Chatterjee, K., Pavlogiannis, A., Sinha, N., Vaidya, K.: Data-centric dynamic
partial order reduction. Proc. ACM on Program. Lang. 2(POPL), 31:1–31:30 (Jan 2018),
http://doi.acm.org/10.1145/3158119

[9] Chatterjee, K., Pavlogiannis, A., Toman, V.: Value-centric dynamic partial order reduction.
Proc. ACM Program. Lang. 3(OOPSLA), 124:1–124:29 (Oct 2019), https://doi.org/10.1145/
3360550

[10] Christakis, M., Gotovos, A., Sagonas, K.: Systematic testing for detecting concurrency
errors in Erlang programs. In: Sixth IEEE International Conference on Software Testing,
Verification and Validation. pp. 154–163. ICST 2013, IEEE, Los Alamitos, CA, USA (Mar
2013), https://doi.org/10.1109/ICST.2013.50

[11] Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: Principles of Programming Languages, (POPL). pp. 110–121. ACM, New York, NY,
USA (Jan 2005), http://doi.acm.org/10.1145/1040305.1040315

[12] Godefroid, P.: Model checking for programming languages using VeriSoft. In: Principles
of Programming Languages, (POPL). pp. 174–186. ACM Press, New York, NY, USA (Jan
1997), http://doi.acm.org/10.1145/263699.263717

[13] Godefroid, P., Hanmer, R.S., Jagadeesan, L.: Model checking without a model: An analysis
of the heart-beat monitor of a telephone switch using VeriSoft. In: Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 124–133. ISSTA,
ACM, New York, NY, USA (Mar 1998), https://doi.org/10.1145/271771.271800

[14] Holzmann, G.J., Bosnacki, D.: The design of a multicore extension of the SPIN model
checker. IEEE Trans. Softw. Eng. 33(10), 659–674 (Oct 2007), https://doi.org/10.1109/TSE.
2007.70724

[15] Holzmann, G.J., Joshi, R., Groce, A.: Swarm verification techniques. IEEE Trans. Softw.
Eng. 37(6), 845–857 (Nov 2011), https://doi.org/10.1109/TSE.2010.110

[16] Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless model check-
ing for C/C++ concurrency. Proc. ACM on Program. Lang. 2(POPL), 17:1–17:32 (Jan 2018),
https://doi.org/10.1145/3158105

[17] Kokologiannakis, M., Raad, A., Vafeiadis, V.: Model checking for weakly consistent libraries.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 96–110. PLDI 2019, ACM, New York, NY, USA (Jun 2019),
https://doi.org/10.1145/3314221.3314609

https://doi.org/10.1145/3360576
https://doi.org/10.5281/zenodo.3401442
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1145/324133.324234
http://doi.acm.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1109/ICST.2013.50
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/263699.263717
https://doi.org/10.1145/271771.271800
https://doi.org/10.1109/TSE.2007.70724
https://doi.org/10.1109/TSE.2007.70724
https://doi.org/10.1109/TSE.2010.110
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609


16 Magnus Lång and Konstantinos Sagonas

[18] Kokologiannakis, M., Sagonas, K.: Stateless model checking of the Linux kernel’s read–copy
update (RCU). International Journal on Software Tools for Technology Transfer 21(3),
287–306 (Jun 2019), https://doi.org/10.1007/s10009-019-00514-6

[19] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and
reproducing heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation. pp. 267–280. OSDI ’08,
USENIX Association, Berkeley, CA, USA (Dec 2008), http://dl.acm.org/citation.cfm?id=
1855741.1855760

[20] Norris, B., Demsky, B.: A practical approach for model checking C/C++11 code. ACM Trans.
Program. Lang. Syst. 38(3), 10:1–10:51 (May 2016), http://doi.acm.org/10.1145/2806886

[21] Puente, J.P.B.: Persistence for the masses: RRB-vectors in a systems language. Proc. ACM
Program. Lang. 1(ICFP) (Aug 2017), https://doi.org/10.1145/3110260

[22] Rodríguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order reduction.
In: 26th International Conference on Concurrency Theory (CONCUR 2015). LIPIcs, vol. 42,
pp. 456–469. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (Aug 2015), http://dx.doi.
org/10.4230/LIPIcs.CONCUR.2015.456

[23] Simsa, J., Bryant, R., Gibson, G.A., Hickey, J.: Scalable dynamic partial order reduction.
In: Runtime Verification, Third International Conference, RV 2012. LNCS, vol. 7687, pp.
19–34. Springer (Sep 2012), https://doi.org/10.1007/978-3-642-35632-2_4

[24] Stern, U., Dill, D.L.: Parallelizing the murφ verifier. Formal Methods in System Design 18,
117–129 (Mar 2001), https://doi.org/10.1023/A:1008771324652

[25] Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dynamic partial order
reduction based verification of threaded software. In: Model Checking Software, 14th
International SPIN Workshop. LNCS, vol. 4595, pp. 58–75. Springer (Jul 2007), https:
//doi.org/10.1007/978-3-540-73370-6_6

[26] Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed memory
models. In: Programming Language Design and Implementation (PLDI). pp. 250–259. ACM,
New York, NY, USA (Jun 2015), http://doi.acm.org/10.1145/2737924.2737956

https://doi.org/10.1007/s10009-019-00514-6
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://doi.acm.org/10.1145/2806886
https://doi.org/10.1145/3110260
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1007/978-3-642-35632-2_4
https://doi.org/10.1023/A:1008771324652
https://doi.org/10.1007/978-3-540-73370-6_6
https://doi.org/10.1007/978-3-540-73370-6_6
http://doi.acm.org/10.1145/2737924.2737956

	Parallel Graph-Based Stateless Model Checking

