NESFuzzer: Stateful Fuzz Testing of loT Network Stacks

Nicolas Tsiftes
RISE Research Institutes of Sweden and Digital Futures
Stockholm, Sweden
nicolas.tsiftes@ri.se

Abstract

Low-power IPv6 stacks are being used in a myriad of IoT networks,
which makes it essential that they are secure. Fuzz testing has
proven an invaluable method to discover vulnerabilities in soft-
ware that take complex input, including protocol implementations.
Still, fuzzing tools typically cannot test state-dependent parts of
IoT network stacks. To bridge this gap, we design and implement
NESFuzzer, a tool for stateful fuzzing of IoT network stacks. Unlike
previous methods in this area, NESFuzzer enables stateful fuzzing
while leveraging the techniques of existing coverage-guided and hy-
brid fuzzing tools such as MOpt and SymCC without modifications.
This decoupling is made possible through a modular, network-based
architecture in which the system being tested communicates with
an external service to generate specific protocol states. We evalu-
ate our work through a case study on the Contiki-NG operating
system, and show that the test coverage increases by up to 170% in
certain modules of the network stack. Using NESFuzzer, we have
discovered four security vulnerabilities that could not be found
with conventional fuzzing.

CCS Concepts

« Security and privacy — Operating systems security; - Com-
puter systems organization — Embedded software; « Software
and its engineering — Software testing and debugging.

Keywords

Internet of Things, fuzz testing, embedded network stacks, stateful

1 Introduction

Numerous security vulnerabilities in IoT devices have been ex-
posed in recent years. For instance, a report released in 2020 shows
vulnerabilities in several network stacks for low-power wireless
communication [12]. The network stack of a resource-constrained
IoT operating system consists of various protocols typically orga-
nized in layers, with IPv6é being the narrow waist [17]. Hence, for a
single input packet, different protocols may process different parts
of the packet. Vulnerabilities in protocol implementations can be
exploited by attackers if they are able to transmit carefully crafted
packets into the network stack [4, 16].

Fuzz testing, or fuzzing, is an effective dynamic method to expose
vulnerabilities and bugs in software through the injection of a huge
amount of mutated input data [22, 35]. It is especially useful for
testing software that processes complex input data—a key trait of an
IoT network stack. Figure 1 shows a common fuzzing setup, where
a fuzzing tool, or fuzzer, injects a large number of mutated data into
a System Under Test (SUT). Moreover, a fuzzing harness may be

Thiemo Voigt
RISE Research Institutes of Sweden
Stockholm, Sweden
Uppsala University
Uppsala, Sweden
thiemo.voigt@angstrom.uu.se

Mutated input .
Fuzzing

Exit status, - . System Under Test
coverage info

Store inputs leading to
crashes, hangs, and unique paths

Figure 1: A common fuzzing setup consisting of a fuzzing tool
that executes a System Under Test iteratively with a huge
amount of mutated input data. The main objective is to reach
many different execution paths and expose bugs.

employed with the SUT to direct the input to a specific entry point
in the code and steer its execution to suit the test objective. This
type of fuzzing is typically stateless, as a single input is given for
each execution of the SUT. In SUTs that have state-dependent code,
such as an IPv6-based IoT network stack, a regular fuzzing setup
limits the attainable test coverage [31]. Hence, one cannot test code
segments that can be reached only when the SUT is in some specific
state. For example, a single TCP connection can transition among
a variety of states [37]. Therefore, one needs to be able to establish
such states in a controlled manner to achieve a high coverage when
fuzzing the TCP implementation of an IoT network stack.

Due to the lack of practical tools to generate state for multiple
protocols in IoT network stacks, previous fuzz testing campaigns
have primarily been conducted using stateless fuzzing methods
with state-of-the-art fuzzers. When fuzzing a network stack, it can
be sufficient to inject a single packet per fuzzing iteration to test a
large set of the code paths in the network stack that are not state-
dependent. For instance, Poncelet et al. found 18 vulnerabilities in
the network stack of the Contiki-NG OS using stateless fuzzing [31].
Hence, the next natural step to further improve the fuzzing of IoT
network stacks is to enable stateful fuzzing.

Challenges and State of the Art. A variety of different tools
have been proposed to overcome the limitations of current fuzzing
methods when applied on state-dependent network protocol im-
plementations [24, 29, 32]. Such tools are typically designed for
testing applications that communicate using a single protocol over
network sockets. By contrast, fuzzing an IoT network stack poses
new challenges that are not addressed in existing tools for stateful
fuzzing. In particular, a) the mutated input provided by fuzzers
is processed by multiple protocol implementations operating at
different layers, b) the protocols do not always offer a feedback
mechanism that signals whether the internal state has changed
(e.g., 6LOWPAN fragmentation), and c) the state in one protocol

https://orcid.org/0000-0003-3139-2564
https://orcid.org/0000-0002-2586-8573

implementation can sometimes affect the code paths taken in other
protocol implementations.

Furthermore, existing stateful fuzzing approaches are typically
strongly coupled with a specific fuzzing tool [29], and communicate
with the SUT using protocol-controlled timers and asynchronous
communication over network sockets [5]. Such communication can
slow down the fuzzing considerably, counteracting one of the main
advantages of fuzzing over other software testing methods such as
symbolic execution: rapid software execution.

Approach. In this paper, we present NESFuzzer, a novel tool that
enables stateful fuzz testing of embedded network stacks. A key
aspect of NESFuzzer is that it separates the fuzz testing functional-
ity from the state generation in a modular design, without losing
the ability to employ the capabilities of state-of-the-art fuzzing
tools. The state generation is handled by a separate process, called
the state controller, that can exchange messages with the SUT to
generate a set of configured states before injecting the fuzzing data.
While this message exchange adds an overhead for the execution
speed of the fuzzing, it trades it for an ability to reach new code
paths in the state-dependent parts of protocol implementations.
However, there are also optimizations that can reduce the SUT ini-
tialization overhead, as with the deferred mode available in a variety
of AFL-based fuzzers [39]. Moreover, NESFuzzer is designed to be
independent of the method to generate states to fuzz test. We equip
the state controller with a set of protocol state models, which are
implemented with the help of Scapy, an external library for parsing
and generating messages for a large set of protocols [33].

When using NESFuzzer, the SUT needs to be modified slightly
to connect the state controller with input and output functions that
can be used to exchange messages to control the state in the SUT.
This workflow is simplified through a software library provided as
part of NESFuzzer, which has a set of function calls to handle the
communication with the SUT and failure handling. When fuzzing
the SUT, one can thus simply use a selected fuzzing tool and gain
the state generation capability of NESFuzzer without having to
modify the fuzzing tool.

Contributions. With this paper, we make the following techni-
cal contributions.

(1) We present NESFuzzer, a novel method for fuzzing stateful
protocols in IoT network stacks. NESFuzzer improves upon
the state of the art through a programmable, decentralized
design that decouples the state generation from the fuzzing
tool, and supports fuzzing with configurable protocol states.

(2) We experimentally evaluate NESFuzzer’s efficacy to fuzz
test an IoT network stack compared to conventional fuzzing,
and show considerable improvements in the coverage of
several protocol implementations. Our results show an in-
crease of the coverage by up to 170% in certain modules
of the Contiki-NG network stack compared to using the
state-of-the-art fuzzing tool SymCC [30] alone.

(3) We perform a case study on the Contiki-NG network stack,
and find several new bugs in its RPL and TCP implementa-
tions, of which three are zero-day vulnerabilities that could
not be found with state-of-the-art stateless fuzzers.

Outline. The remainder of the paper is structured as follows. We
give background information on fuzzing and embedded network

Nicolas Tsiftes and Thiemo Voigt

stacks in Section 2. Thereafter, we present our system design in
Section 3, and our case study on the Contiki-NG OS in Section 4. We
experimentally evaluate our work in Section 5, and cover related
work in Section 6. Lastly, we conclude the paper in Section 7.

2 Background

This work is motivated by the need for increased security in em-
bedded network stacks for the Internet of Things. In the following,
we give an overview of such network stacks and how fuzz testing
methods can be applied on them.

2.1 Fuzz Testing

Fuzz testing, or fuzzing, is a dynamic method for testing software
implementations for execution errors such as crashes and time-
outs [25]. A fuzzing tool, or fuzzer executes a System Under Test
many times with different input data that has been generated by
using a set of mutation operators. At the start of the test, the fuzzer
can use a test seed consisting of input data files that are suitable
for the SUT; e.g., a set of PDF document files when the SUT is a
PDF processing library. It can also be possible to start without a
test seed, leaving it to the fuzzer to try to generate suitable input
data for the SUT. During a fuzzing session, the fuzzer typically
stores a corpus of input data that generated an interesting response
from the SUT, such as a crash, a hang, or a unique path found. This
corpus can then be used for further analysis and testing of the SUT
using debugging tools and code sanitizers.

In the simplest fuzzing method, called blackbox fuzzing, the
fuzzing tool has no insight into the execution of the SUT. This
can be the case when fuzzing a binary without having access to the
source code. Coverage-guided greybox fuzzing is a method that can
give considerable improvements in the fuzzing efficiency compared
to blackbox fuzzing, as it can check which input mutations lead to
new coverage following each execution [39]. It requires that the
SUT is instrumented to allow the fuzzer to retrieve coverage data
generated from each execution of the SUT. Such instrumentation
can be implemented by adding instructions that write data in a
coverage map when transitioning between basic blocks, or by exe-
cuting the SUT in an emulator that can keep track of the coverage.
The coverage map resides in shared memory that is mapped by both
the fuzzing tool and the SUT. Fuzzing tools can also integrate other
software testing methods such as symbolic execution [30] in what
is called hybrid fuzzing [28]. Hybrid fuzzers can use these methods
to generate new test cases when the mutation-based fuzzing can-
not find new execution paths. The mutation-based fuzzer can then
continue using this data for its subsequent mutations and thereby
enable the testing to reach deeper into the SUT.

2.2 Embedded Network Stacks

Embedded network stacks are designed for resource-constrained
devices whose typical requirements include low-power communi-
cation, low memory consumption, and small code size. Several such
network stacks have been developed over the past two decades,
including the Arch Rock IPv6 stack [17], the Berkeley Low-power
IP stack (BLIP) [20], the Contiki-NG network stack [27], the Generic
Network Stack (GNRC) in RIOT OS [6], IwIP [1], OpenThread [18],
OpenWSN [38], and the Zephyr network stack [3].

NESFuzzer : Stateful Fuzz Testing of loT Network Stacks

These network stacks are typically based on multiple standard
protocols at different communication layers. IPv6 commonly serves
as the narrow waist at the network layer [17], providing a large
128-bit address space and auto-configuration for devices. 6LoW-
PAN serves as an adaptation layer below the IPv6 layer, where it
handles header compression and packet fragmentation to support
low-power and lossy networks (LLNs). For Neighbor Discovery
(ND), one can use either the regular IPv6 ND or the LLN-optimized
6LoWPAN ND. For routing, the IETF has standardized IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) [14]. RPL ar-
ranges the network nodes in a destination-oriented directed acyclic
graph with distance-vector routing, and exchanges control mes-
sages using the Internet Control Message Protocol (ICMPv6).

For the transport layer, the network stacks typically provide UDP
communication, but in a few cases also TCP. The Constrained Ap-
plication Protocol (CoAP) is a standard protocol for the application
layer that provides a request/response communication pattern sim-
ilar to HTTP, but is designed for resource-constrained devices and
datagram-oriented transport protocols such as UDP [36]. TCP is
also included in several embedded network stacks, despite the chal-
lenges that resource constraints and the lossy links of low-power
wireless communication can pose for TCP [7]. In fact, recent litera-
ture has shown how to implement and configure TCP in a way that
ameliorates its performance in LLNs [21]. Several cryptographic
protocols and services suitable for IoT networks are also standard-
ized by the IETF, including Datagram Transport Layer Security
(DTLS), Object Security for Constrained RESTful Environments
(OSCORE), and Ephemeral Diffie-Hellman Over COSE (EDHOC).
DTLS and OSCORE can be used with CoAP to provide secure end-
to-end communication for applications, whereas EDHOC provides
a lightweight protocol for Diffie-Hellman key exchange.

2.2.1 Fuzzing Support for Embedded Network Stacks. The plethora
of protocols available in an embedded network stack pose some
challenges for fuzzing. First, there can be dependencies between
the protocols, making it difficult to fuzz test some protocol imple-
mentations in isolation. When fuzzing the network stack at some
entry point for the fuzzing input, the network stack will make a
series of validity checks on the input that is treated as a network
packet. For example, it will first validate the 6LoWPAN header,
then decompress the packet and feed it to the [Pv6 implementation,
where it will face another set of checks, and so on as the packet
traverses upwards among the communication layers.

When fuzzing an IoT network stack, a practical solution is typi-
cally to use a native platform provided by the IoT OS. Most operating
systems for resource-constrained IoT devices provide such a plat-
form, including Contiki-NG, RIOT, and Zephyr. The native platform
runs as an application in a host OS such as Linux or FreeBSD, and
relies on standard POSIX functionality to implement the platform-
dependent APIs of the IoT OS. For example, a many of the protocols
and applications in the aforementioned IoT operating systems can
typically be used in the native mode, except for some protocols be-
low the IPv6 layer, such as the IEEE 802.15.4 Time-Slotted Channel
Hopping (TSCH) protocol. At the time of writing, RIOT and Zephyr
provide basic fuzzing modules in their respective code reposito-
ries, whereas Contiki-NG has fuzzing support through an external
fuzzing benchmark repository [31].

While the case study to evaluate NESFuzzer on a real-world
system is conducted on the open-source Contiki-NG OS [27], NES-
Fuzzer is not limited to a single OS. To fuzz test another OS such
as Zephyr or RIOT using NESFuzzer, one needs to create a fuzzing
harness tailored for its application programming interfaces. These
modifications entail primarily the insertion of hook function calls
to the NESFuzzer library in the input and output functions of the
MAC layer or the network layer, but also different changes to avoid
using real-time timers and non-deterministic protocol mechanisms.
In Section 4, we explain the OS-dependent functionality needed to
support fuzzing of Contiki-NG with NESFuzzer.

2.2.2 The Contiki-NG Operating System. As our case study revolves
around Contiki-NG, we also give a brief background of this OS.
Contiki-NG is designed for resource-constrained IoT devices, with
RAM typically in the range of 10-100 kB, and ROM space in the
range of 100-1000 kB. Contiki-NG was forked from its predecessor,
the Contiki operating system [13], in 2017. Its main principles are to
focus on a well-maintained set of IoT platforms, a low-power IPv6
network stack composed of standard protocols, and a predictable
release schedule. The user community includes both industry and
academia, with Contiki-NG being used in commercial IoT products
and as a platform for research [27].

Due to the need to operate in highly resource-constrained de-
vices, Contiki-NG is designed as a monolithic system, where both
the core system and applications typically run in the same memory
space with limited memory protection and isolation. Additionally,
its process scheduling is event-based and cooperative. A vulnerabil-
ity that can be triggered in any part of the system by an incoming
packet can thus have a major effect. Hence, the packet processing
paths of all protocols implementations—both in the core system
and applications—need to be thoroughly tested.

3 NESFuzzer Design

To enable stateful fuzzing of IoT network stacks, we present the
design and implementation of NESFuzzer. When fuzzing a network
stack, it is imperative to cover a plethora of protocol implemen-
tations operating at different layers. These implementations can
be reachable by injecting packets at one or more entry points in
the SUT. Unfortunately, using current fuzzers without a complex
harness limits the attainable coverage due to the state-dependent
functionality in certain parts of the network stack. The execution
paths taken in a protocol implementation for an input packet can
depend on state at lower layers. For instance, when a TCP-based
application is running at the top layer, we may need to initialize
not only the TCP state but also routing protocol state and IPv6
neighbor discovery state to extend the code coverage.

As shown in Figure 2, NESFuzzer is built with a modular ar-
chitecture that decouples the tasks of a) generating the state in
the network stack and b) performing the fuzzing. This decoupling
allows NESFuzzer to be used with a plethora of fuzzing tools, which
can be replaced with low effort as the state of the art progresses.
NESFuzzer comprises the following key components:

e The state controller, which is a network server process
containing a set of programmable protocol state models to
generate state. It is responsible for communicating with the
harness for a brief period to generate a user-defined state.

loT Network Stack (SUT)

Fuzzer CoAP MQTT
E.g., AFL,
MOpt, SymCC UDP TCP

1. Execute
iteration i with
mutated input M; v

5. Inject mutated
Fuzzing input M;

6LoWPAN
Harness

NESFuzzer MAC

A 2. Initialize

4. Signal —
completion of >
state S; | NESFuzzer 3. Exchange packets to

Library build state S;in the SUT

» >
\ < >

State
Controller

Figure 2: Schematic overview of NESFuzzer in a single fuzzing
iteration with state generation. Unlike a typical fuzzing op-
eration, which contains only steps 1 and 5, NESFuzzer inserts
steps 2-4 to generate a pre-selected state in the SUT before
injecting the fuzzed input.

e A fuzzing harness that injects packets into the IoT network
stack. It uses the functionality of the NESFuzzer library to
generate protocol states before injecting fuzzed packets.

e The NESFuzzer library, which is linked to the fuzzing har-
ness, and manages the communication between the harness
and the state controller to generate state for various proto-
col implementations in the SUT.

e A common fuzzing tool—such as AFL [39], MOpt [23], or
SymCC combined with AFL [30]—that is responsible for ex-
ecuting the SUT through the harness repeatedly, providing
mutated input data, and monitoring progress.

3.1 Fuzzing Procedure

When using NESFuzzer, the procedure differs from conventional
fuzzing in that the fuzzing harness for the SUT executes a protocol
state generation phase. Figure 2 shows the sequence of actions
performed during a single fuzzing iteration when generating a
specific state in the SUT. The following five steps are taken.

(1) The fuzzing tool executes the harness, providing a mutated
input M; to inject into the SUT.

(2) The harness initializes the NESFuzzer library, providing
information such as the destination address and port of the
state controller and the selected log method.

(3) The NESFuzzer library forwards packets between the SUT
and the state controller to generate a selected state S; in
the SUT. During a fuzzing experiment, the selected state
can be switched at times according to one of the policies
described in Section 3.4.

(4) The NESFuzzer library signals the completion of the state
generation to the harness.

(5) The harness finally injects the mutated input M; to the SUT.

This differs from a typical fuzzing session, which would have
only the aforementioned steps 1 and 5. We call the introduced steps
2-4 the Protocol State Generation phase, and describe it in further
detail below.

Nicolas Tsiftes and Thiemo Voigt

3.2 Protocol State Generation Phase

In order to enable stateful fuzzing of the SUT, the fuzzing harness
communicates with the state controller to exchange data packets for
different protocols from the 6LoWPAN layer and upwards. Immedi-
ately after the fuzzing harness has been initialized in a new fuzzing
iteration, we execute the protocol state generation functionality
using the NESFuzzer library. This functionality opens a communi-
cation session and encapsulates the exchanged data packets using
the NESFuzzer Protocol described below.

A desired end-state for each protocol to fuzz test is specified in
the configuration of the state controller. During the initialization
phase, several protocols can communicate simultaneously with the
state controller to generate state. Once the configured end-state
has been reached for all activated protocols, the state controller
terminates the communication session to allow the fuzzing harness
to start injecting input data provided by a fuzzer into the SUT.

If a state cannot be generated within a configurable timeout
period, the harness exits and lets the fuzzing tool restart the SUT.
If such a problem persists over multiple iterations, it could be a
configuration error that should be investigated. Yet, in the regular
case, the state generation will succeed within the timeout period.

3.2.1 NESFuzzer Protocol. The communication between the fuzzing
harness and the state controller is conducted using the NESFuzzer
Protocol, a UDP-based protocol that is implemented using Google’s
Protocol Buffers. The NESFuzzer protocol’s main purposes are (1)
to signal the start and end of a state generation session, and (2) to
carry packets between the network stack and the state controller.

The NESFuzzer Protocol contains three main message types
(START_SESSION, END_SESSION, PKT), along with two error mes-
sage types (TIMEOUT, FAILURE). The START_SESSION message de-
lineates a new state generation phase, which ensures that all proto-
col state models in the state controller get reset. The END_SESSION
message communicates to the fuzzing harness that a set of config-
urable state goals (see Section 3.3) have been reached successfully,
whereby the next step is to pass the mutated input from the fuzzing
tool into the IoT network stack. The PKT message encapsulates full
IPv6 or 6LoOWPAN messages, which are packed and unpacked at
each side of the communication between the NESFuzzer library and
the state controller. Furthermore, each sent message has a sequence
number and a boolean flag that determines whether the message
is (1) initiated by the sender, in which case the sequence number
must be strictly monotonically increasing, or (2) a response to a
message sent by the other side, in which case the sequence number
must match the one of the original message.

3.2.2 Example State Generation Session. Figure 3 shows a basic
session consisting of a sequence of packets exchanged to generate
two protocol states for RPL and TCP respectively. At the SUT side,
the IoT network stack contains a MAC Emulation Layer that uses the
NESFuzzer library to forward packets back and forth with the state
controller. In this example, the state generation phase ends when
the state controller has received one TCP packet with application
data in the ESTABLISHED state. Additionally, we generate a basic
routing state with RPL by sending a DIO message that sets up
an initial route with a global IPv6 address prefix in the SUT. This
exchange unlocks state-dependent execution paths in the network

NESFuzzer : Stateful Fuzz Testing of loT Network Stacks

Fuzzing Harness

IoT Network MAC Emulation State
Stack Layer Controller

START SESSIO |

|
host2:1026 > host1:8591 TCP SYN J PKT N
P gl
¢ host1:8591 > host2:1026 TCP SYN/ACK I= PKT }
fe80::2 > dst=ff02::1a RPL DIS _: PKT J
feg0::1 > ff02::1a RPL DIO i PKT i

Y

7'y
A

host2:1026 > host1:8591 TCP PUSH/ACK | PKT

host1:8591 > host2:1026 TCP PUSH/ACK

<

PKT

A

I S

END SESSION

Figure 3: An example session between the fuzzing harness
and the state controller to generate two protocol states using
interleaved messages. The state is reconstructed before the
fuzzing input is inserted into the network stack.

stack that could not have been exercised with fuzzed input packets
alone. In this example, these code paths involve packet forwarding,
RPL message processing, and TCP packet processing.

3.3 Protocol State Models

The state controller contains a set of protocol state models, which
provide state generation capabilities for communication protocols.
A protocol state model typically implements a simplified state ma-
chine that is sufficient to reach a set of state-dependent code paths
at various depths in the SUT, as well as the ability to construct and
parse the protocol messages needed for this state machine. We use
the Scapy library [33] for Python to construct and parse messages
for the supported protocols. When implementing a new protocol
state model, one can thus leverage Scapy’s vast protocol support,
and focus on the implementation of the state machine. For instance,
our TCP model is implemented in just 258 source lines of code.

Each protocol state model has an initialization function that is
called once at the start of the state controller, a reset-state function
that is called for each new state generation session, and a packet-
input function that is called when receiving traffic from the harness
in the protocol state generation phase. If an input packet triggers
a response by the protocol state model, the response packet is
returned from the input function and sent to the NESFuzzer library
where it is encapsulated into another type of packet and transmitted
to the state controller.

Before a fuzzing session, one can configure the protocol states
that should be generated. Listing 1 shows a configuration example
in the YAML format. Currently, NESFuzzer supports four protocol
state models for widely used protocols in IoT network stacks: RPL,
TCP, 6LoWPAN fragmentation, and IPv6 fragmentation.

3.3.1 RPL State. RPL, the IPv6 Routing Protocol for Low-Power
and Lossy Networks [14], is a common state-dependent protocol
used in IoT network stacks. Therefore, we implement an RPL pro-
tocol state model that can set up various routing states. RPL uses

protocols:

tep:

reset_policy: reconnect

listen_port: 8591

connect_port: 8592

explore_states: [SYN_RCV, EST, FIN_WAIT_1]
rpl:

dodag_root: true

instance_id: 1

prefix: fdee::/48

explore_states: [DIO_SENT, DAO_SENT]
ipv6_reass:

packet_size: 1000

fragment_size: randomize

Listing 1: A simple NESFuzzer configuration example in
YAML format, with protocol states set for TCP, RPL, and
IPv6 fragmentation.

ICMPv6 to exchange control messages, and builds a routing topol-
ogy in the form of a destination-oriented directed acyclic graph
(DODAG). At the start of the SUT, RPL typically sends a DODAG
Information Solicitation (DIS) message to ask for information about
the DODAG in use by its neighbor nodes, In the state controller,
we generate a DODAG Information Object (DIO) containing the
necessary information for the SUT to join the routing topology.

The RPL protocol state model can be configured with a variety
of settings, including the DODAG ID, the IPv6 address prefix used
for auto-configuration, and the mode of operation that indicates
whether storing or non-storing mode is used [14]. These values
should be set to match any expectations of the SUT to prevent
the packets from being dropped. In the case of Contiki-NG, the
suitable mode of operation depends on whether the RPL-Classic or
the RPL-Lite implementation is used, because the latter supports
non-storing mode only.

3.3.2 TCP State. We build a simplified implementation of TCP in
the state controller. This implementation manages a set of connec-
tions identified by the IPv6 address and port number of the source
and the destination endpoints. With each connection, we associate
a Transmission Control Block (TCB) [37], as well as a few internal
variables, such as the application state associated with the TCP
connection. The TCP implementation can either connect actively to
aremote endpoint or accept incoming connections. When receiving
TCP packets, the protocol state model validates the TCP header
fields and transitions between different TCP states; e.g., LISTEN —
SYN_RECEIVED — ESTABLISHED.

At the harness side, a small TCP socket application is set up to
communicate with the TCP protocol state model in the state con-
troller on the configured TCP ports. Observe that this connection
does not use the host operating system’s socket API, but rather
goes through the network stack down to the MAC layer, where the
generated packets are intercepted by the NESFuzzer library and
forwarded to the state controller, as explained above.

3.3.3 6LoWPAN State. 6LOWPAN is a standard adaptation layer
between the IPv6 layer and the IEEE 802.15.4 MAC layer [26]. It
can keep state for packet fragmentation and packet compression.

For each fuzzing iteration, NESFuzzer can generate 6LoWPAN frag-
mentation states according to a configuration that determines a
set of injected packet fragments. The fragments can have variable
identifiers (i.e., sender address, receiver address, and packet tag
ID) in addition to different sizes. For the packet compression func-
tionality, 6LOWPAN instead relies on shared network state when
encoding packets in the LONPAN_IPHC format. Because this state
is pre-configured rather than generated, NESFuzzer is mainly con-
cerned with the 6LoWPAN fragmentation state.

3.3.4 IPv6 Fragmentation State. The pIP implementation of IPv6
supports fragmentation, which occurs when an IPv6 packet is larger
than the maximum transmission unit (MTU) for a given network in-
terface. In NESFuzzer, the IPv6 fragmentation protocol state model
operates with one-way traffic directed from the state controller to
the harness. The injected packets comprise multiple fragments of
configurable sizes. By injecting these fragments into the network
stack, a single fuzzed input packet can thereafter exercise the IPv6
fragment reassembly functionality in pIP.

Since the fragments are not sent as replies to any particular
packet coming from the network stack, we have added the func-
tionality in the state controller to schedule transmissions of packets
at the end of each state generation session. Hence, these packets
generate state by relying on the domain knowledge inherent in the
protocol state module for IPv6 fragmentation to generate a state
in the SUT without a two-way packet exchange to confirm that
the state has been reached. In Listing 1, this is configured in the
ipv6_reass section, where the packet size and the fragment size can
be chosen. Unlike the other protocol state models, this section does
not contain an explore_states keyword because the state generation
is limited to simply sending the aforementioned fragments.

3.4 State Selection Policies

Each protocol state model has a predetermined set of states that can
be configured to be generated for the SUT during a fuzzing session.
During a fuzzing session, the operator configures which of these
states should be used, and which policy should be used to switch
among them. NESFuzzer supports the following three policies for
state generation.

e Constant state. The operator configures a specific state to
be generated for all iterations.

o Time-based state switching. The state is switched automati-
cally after a configured period of time.

o Progress-based state switching. A script monitors the fuzzer’s
progress in a given state. Once the fuzzer has not found
a new path in a certain amount of time, it signals state
controller to switch state.

Whenever the state is switched, it is logged so that the fuzzing
operator can track the state that was generated if a crashing or
hanging input is found at some point.

3.5 Test Seed Generation

The test seed is a set of files that fuzzers use to generate inputs
for the SUT. The seed selection can have a major impact on the
fuzzing results [19]. Still, it can be a challenge to create a suitable
test seed, as the typical procedure is to select samples of input data

Nicolas Tsiftes and Thiemo Voigt

considered representative for the SUT. This problem is particularly
evident when fuzzing a network stack, since a packet may have
to pass through the packet header validations at multiple network
layers. In the case of fuzzing a TCP implementation, packets may
need to be injected at the IPv6 layer or below. Thus, in order to
reach the TCP code, a packet must have an acceptable IPv6 header;
i.e., acceptable source and destination addresses, correct extension
headers, and a final next-header value set to 6 (for TCP). Following
this header, there must be an acceptable TCP header, with source
and destination ports matching those of an existing socket. If one
simply collects a packet trace from a network of nodes running the
SUT, the captured traffic may come from a session with no error
conditions and few protocol extensions being used, thereby con-
taining a limited representation of the protocol’s message structure.
Additionally, the seed set may tediously need to be re-captured in
case the SUT configuration changes.

To address this issue, NESFuzzer provides a simple method to au-
tomatically generate a seed set for a specific experiment by record-
ing all the packets exchanged between the harness and the state
controller during state generation in a dry-run prior to fuzzing.
Hence, this generates a seed set with correct packets for the stateful
protocols being fuzzed. If certain protocol parameters get changed,
or whole protocols are added or removed, the seed set can be re-
generated in a matter of minutes.

4 Network Stack Fuzzing

To demonstrate the benefits of NESFuzzer, we conduct a case study
on an IoT network stack. This type of fuzzing target is challenging
as it involves multiple state machines for different protocols. In this
section, we describe some of the requirements to support such a
fuzzing target, including the fuzzing harness and implementation
considerations. In Section 5, we use this harness for the evaluation
of NESFuzzer. We select the Contiki-NG network stack for this
purpose because it contains a plethora of protocol implementations
that have a long history of use and have been tested in previous
fuzzing efforts [31, 34].

4.1 SUT Requirements and Portability

Although we conduct this case study on a single SUT, we have
designed NESFuzzer to be portable to other operating systems
for resource-constrained devices with low-power IPv6 network
stacks such as Zephyr [3] and RIOT OS [6]. The key requirement
from each of these operating systems is that they have a native
platform, meaning that the system can be compiled and executed
as an application running in a larger operating system with POSIX
support, such as Linux.

Most of the functionality required to use NESFuzzer is OS-agnostic
and can be accessed through the functions of the NESFuzzer library
that are shown in Listing 2. This library simplifies the usage of
NESFuzzer by hiding the complexity of sending and receiving the
packets to the state controller, as well as controlling the state gener-
ation process. Hence, the harness-specific part required to support
NESFuzzer consists of hooking the packet input and output func-
tions of the host OS into the library module, and adding function
calls to initialize the library and to wait for the state to be reached
before fuzzing. Meanwhile, the OS-dependent part described below

NESFuzzer : Stateful Fuzz Testing of loT Network Stacks

// Set the callback for packets received from the state generator
void nesfuzzer_set_callback(nesfuzzer_input_callback_t input_cb);
// Start a state-generation session.
bool nesfuzzer_start(const char *nesfuzzer_host,
unsigned nesfuzzer_port, bool enable_networking,
unsigned log_types, unsigned log_level);
// Stop a state-generation session.
bool nesfuzzer_stop(void);
// Check whether the state-generation phase resulted in an error
nesfuzzer_error_t nesfuzzer_error(void);
// Send a packet to the state controller.
int nesfuzzer_send(const void *packet_buf, size_t packet_len);
// Check whether the state-building phase finished.
bool nesfuzzer_finished(void);

Listing 2: The main functions of the NESFuzzer library appli-
cation programming interface used in the fuzzing harness.

consists of approximately 700 source lines of code that need to be
tailored for a given OS.

4.2 Fuzzing Harness

The fuzzing harness conducts the state generation using the NES-
Fuzzer library, and passes the data generated by a fuzzer to an appro-
priate input function in the network stack. For our case study, we
implement the harness as a Contiki-NG application that is started
automatically after the initialization procedure of the operating
system. When the harness application starts, it initializes the NES-
Fuzzer library with a set of configuration parameters, such as the
protocol entry point to use for fuzzed packets, and the host and
port of NESFuzzer’s state controller. After waiting for the protocol
state generation phase to finish, it reads a fuzzed packet from a file
supplied by the fuzzer into a packet buffer.

The harness contains a dispatcher that can inject fuzzed packets
into different protocol implementations. When testing a specific
protocol implementation, it can be more efficient to inject packets
directly into their input handlers and bypass the consistency checks
made on headers processed by lower layers. Several protocol im-
plementations, however, depend on functionality at lower layers to
operate. We select the IPv6 input function as the main entry point,
since IPv6 is the narrow waist of the IoT network stack [17], from
where the fuzzed input packets can reach the protocols at upper
layers. Alternatively, one can inject packets with 6LoOWPAN as an
entry point, reaching the same set of protocols as long as the packet
passes the 6LoOWPAN header validation.

4.3 OS-Specific Functionality

In addition to the implementation of fuzzing harness, we need to
enable a fast exchange of packets in the protocol state generation
phase before the fuzzing harness can inject a packet to the network
stack in a specified state. In the following, we describe various
aspects of the Contiki-NG system that need to be considered, and
the minor modifications that we make to the system internals.

4.3.1 MAC Emulation Layer. To be able to exchange packets in the
protocol state generation phase, we replace Contiki-NG’s medium
access control (MAC) driver with a MAC emulation driver, as is

shown in Figure 2. The emulated MAC driver intercepts packets
transmitted downward from the IPv6 layer, and injects incoming
packets from the state controller into the IPv6 layer.

Instead of exchanging data with an underlying link layer, the
emulated MAC driver sets up a callback in the NESFuzzer library
to receive IPv6 packets from NESFuzzer and propagate them up
through the network stack with the IPv6 layer as the entry point.
Conversely, outgoing packets are received by the MAC driver from
the IPv6 module, and then forwarded to the NESFuzzer library by
a single call to the nesfuzzer_send function.

4.3.2 Time Management. Although we execute Contiki-NG as a
native process in an OS such as Linux, it performs all of the regular
operations with respect to process scheduling and timer manage-
ment. As several protocols rely on the timer functionality, this can
have implications on how fast the protocol states can be generated.
For example, the RPL protocol uses exponentially increasing timers
for DIO messages, and configurable intervals for other types of
control messages.

Since it would be prohibitively slow to wait for these timers
to expire, we modify Contiki-NG to run with an accelerated time
scale. This can be done by simply modifiying a statement in the
os/sys/timer.c module that sets the time interval in the timer
data structure. There is a trade-off, however, in configuring too fast
a time-scale, because certain protocols such as RPL might generate
maintenance traffic, and thus prolong the sequence of messages sent
between the harness and the state controller before the end-state
for all active protocols is reached. Hence, the time scale may need
to be fine-tuned when fuzzing a given network stack configuration.
Still, our preliminary experiments have shown that a timer speed
of 100 times faster than real time is a suitable default setting for
our Contiki-NG implementation.

4.3.3 Mitigating Non-Determinism. Both the execution of NES-
Fuzzer and the SUT can be subject to non-determinism, which can
be observed in the stability metric in AFL-based fuzzers. In other
words, two identical inputs to the SUT can lead to different paths
being taken when executing it at different times. Several factors
in the computing environment can contribute to non-determinism.
For instance, the network-based architecture of NESFuzzer is depen-
dent on the packet processing times in the host operating system.
If the timing varies, the number of packets exchanged for state
generation can vary as well. Another factor can be the built-in
randomness in the protocols.

We mitigate these issues by 1) setting the SUT’s random seed
to the same value for each execution, 2) increasing RPL’s periodic
timers to long intervals so as to remove redundant packets during
the state generation phase, and 3) disabling active link probing in
RPL, which is used to discover neighbor nodes and update their link
metrics. These actions reduce the traffic to the state controller that
does not generate interesting states for fuzzing. When using AFL-
based fuzzers, the harness also resets the coverage data when the
state-generation phase has finished. This ensures that the coverage
data is not affected by the non-determinism of the packet processing
times in the host OS during the state-generation phase.

5 Evaluation

We experimentally evaluate NESFuzzer with respect to its achieved
code coverage, test seed efficiency, and execution performance.
Moreover, we demonstrate NESFuzzer’s capability to enhance the
vulnerability discovery in IoT network stacks. As a result of this
work, we present three zero-day vulnerabilities that had existed
for several years in Contiki-NG’s network stack, and which could
not be discovered with stateless fuzzing in an extensive bench-
mark of state-of-the-art fuzzers [31]. In addition to finding these
vulnerabilities, we demonstrate that NESFuzzer can find a known
state-dependent vulnerability in an earlier version of Contiki-NG’s
TCP implementation.

5.1 Experimental Setup

We conduct the experiments on a machine with an Intel Xeon W-
1370P CPU with 64 GB RAM running Ubuntu Linux 22. We use the
following tools together with NESFuzzer in our experiments.

(1) American Fuzzy Lop (AFL) 2.57b, which is a widely used
coverage-guided, mutation-based fuzzer.

(2) SymCC (Git commit version 9b20609ada), which is a sym-
bolic execution tool that can be combined with an AFL-
based fuzzer to form a hybrid fuzzer.

(3) MOpt (Git commit version a9a5dc5c@c), a fuzzer based on
AFL that uses a particle swarm optimization (PSO) tech-
nique to schedule mutations more efficiently.

In our experiments, we use Contiki-NG version 4.9 in its na-
tive platform mode as the SUT. The network stack is the same at
the source-level from the 6LoOWPAN layer and upwards, as when
running a Contiki-NG firmware on an IoT platform. For the state
controller, we enable three different protocol state models to build
state in various parts of the network stack: IPv6 reassembly, RPL,
and TCP. To reduce the interpretation overhead, we execute the
state controller using PyPy version 7.3.1, which provides a just-in-
time compiler for Python software. Moreover, each fuzzer instance
has a dedicated state controller process.

5.2 Code Coverage

To evaluate the coverage achieved with NESFuzzer, we conduct a
set of experiments that measure the edge coverage of the SUT, in
addition to inspecting the branch, line, and function coverage in
the network stack modules in more detail.

5.2.1 Network Stack Coverage. We first examine the network stack
coverage using the aggregated output corpora generated by the
fuzzing tools during 24-hour runs for each setting. For this purpose,
we build a script to compare the coverage of two fuzzing experi-
ments, Exp1 and Exp2, as obtained from the afl-cov tool. For each
file in the network stack, we print the differences between the sets
of lines and functions covered in ExpI and Exp2.

Figure 4 shows the attained coverage in key modules of Contiki-
NG’s network stack with NESFuzzer compared to using SymCC
alone. Major coverage increases can be observed both when using
MOpt and SymCC with NESFuzzer. The increases are over 170% in
certain modules of the RPL implementation, where large areas of the
code cannot be reached with fuzzed input packets without setting
up certain states. The uip and tcpip modules, which contain the

Nicolas Tsiftes and Thiemo Voigt

) B NESFuzzer-MOpt
8 150% - BN NESFuzzer-SymCC
g
(8]
£ 100%-
()
2 50%-
o
3 . — . ol om Ml &
(&)
(4]
.5 -50% -
X L .
&Q b"” 'obe QQJ@Q'{') &) 8 o“’& be (\}g‘} \Q((\QQJ &Qb
@&\ R b‘o& SEs
K K < & \')\Q
\' NS ©
K &

Contiki-NG module

Figure 4: Increase in line coverage when fuzz testing the
network stack in Contiki-NG with NESFuzzer. We increase
the coverage when using NESFuzzer-MOpt and NESFuzzer-
SymCC compared with that of regular SymCC fuzzing,.

core IPv6, ICMPv6, TCP, and UDP functionality, gain less because
major parts of their code are stateless. Still, the gain is approximately
13% for uip and 17% for tcpip when executing NESFuzzer with
SymCC. For modules that contain extensive sections that do not
depend on state, the coverage can decrease with stateful fuzzing due
to the lower execution speed. We note, however, that NESFuzzer-
SymCC increases the coverage for all of the tested modules.

Table 1 shows the aggregated coverage attained from the out-
put corpora when fuzzing with SymCC and MOpt combined with
NESFuzzer. The lighter green color indicates advantages up to five
percentage points, whereas the darker green color indicates advan-
tages above five percentage points. NESFuzzer manages to reach
state-dependent code paths, including different packet fragmenta-
tion states, routing protocol states, and TCP socket states. The table
shows that the line coverage surpasses 80% in several of the main
modules of the network stack, including the core uip6 module,
which contains a large part of the IPv6 implementation.

Still, even with the stateful fuzzing of NESFuzzer, it should be
noted that is difficult to reach a 100% coverage for two main rea-
sons. 1) Certain code paths cannot be reached without inserting
statements in the harness that are independent of packet fuzzing.
For example, these could be paths that are executed when allocat-
ing the maximum number of sockets or closing an already closed
socket. It is possible that a complementary fuzzing method that
injects sequences of system calls—such as the one provided by
Syzkaller [2]—can further increase the coverage. 2) We are not gen-
erating an exhaustive set of states for the protocol implementations.
To further enhance the state-generation, it would be interesting for
future work to investigate how one can integrate NESFuzzer with
state machine learning methods for protocols [10].

5.2.2 Coverage Map Density. AFL keeps an approximate track of
edge coverage in the instrumented SUT through a shared memory
bitmap that is typically 64 kB. The coverage map density denotes

NESFuzzer : Stateful Fuzz Testing of loT Network Stacks

Table 1: Coverage achieved when using NESFuzzer together with either SymCC (denoted as SymCCnF) or MOpt (denoted as
MOptnF). Green color indicates a major improvement in coverage for a specific module, whereas light green indicates a minor

improvement.
Module Lines (%) Functions (%) Branches (%)
SymCCNp MOptNF SymCCNp MOptNF SymCCNF MOptNF
1pl 36.4 36.4 35.3 35.3 27.8 27.8
rpl-dag 58.2 58.2 51.9 51.9 37.7 37.5
rpl-ext-header 85.5 86.3 100.0 100.0 64.3 67.9
rpl-icmp6 86.5 87.1 85.7 85.7 59.3 63.2
rpl-timers 56.8 56.8 35.3 35.3 27.8 27.8
uip-ds6 76.1 76.1 60.0 60.0 50.0 50.0
uip-ds6-nbr 78.5 78.5 57.1 57.1 57.7 57.7
uip-ds6-route 76.1 57.6 50.0 50.0 30.9 30.9
uip-nd6 98.0 53.5 100.0 66.7 60.8 28.4
simple-udp 74.0 44.0 60.0 40.0 483 27.6
tep-socket 69.4 69.4 62.5 62.5 44.6 43.8
tepip 64.8 63.2 72.7 72.7 60.5 48.8
uip-icmp6 90.3 90.3 80.0 80.0 82.0 80.0
uip6 80.1 70.4 83.3 83.3 68.4 61.4
uipbuf 69.8 65.1 50.0 50.0 59.1 54.5
the percentage of bytes set in the bitmap for the experiment’s
entire corpus of inputs. Although this metric does not represent 7
the percentage of possible paths covered, it can be used to compare D ezen s I
h ined £ diff £ . . £ h 6F —— NESFuzzer-MOpt
the attained coverage of two different fuzzing experiments tor the SymCC stateless
same SUT binary. Rl
We compare the coverage map density of stateless SymCC fuzzing >
with that of NESFuzzer combined with either SymCC or MOpt. We g 4-
denote these configurations as NESFuzzer-SymCC and NESFuzzer- °
. . 3-
MOpt, respectively. For both of the SymCC experiments, we use g
one AFL coordinator and one worker process. Since MOpt is an 2o
extension of AFL, we use one MOpt-AFL controller and two MOpt- <
AFL worker processes to compensate for the extra process that the 1r
SymCC setup uses. o i i i i i i
Figure 5 shows the arithmetic mean of the coverage map den- oh 4h gh - 12h() 16h 20h 24h
ime (s

sity achieved over time when repeating the experiment ten times.
The shaded areas show 90% confidence intervals. We find that
NESFuzzer-SymCC achieves a considerably higher map density
compared to NESFuzzer-MOpt and regular SymCC fuzzing. SymCC
in stateless mode achieves a coverage close to that of NESFuzzer-
MOpt. We attribute the map density achieved by SymCC in the
stateless mode to its efficient symbolic execution, and the consid-
erably faster execution of stateless fuzzing. Still, a key difference
between the results of NESFuzzer-MOpt and stateless SymCC is
that the sets of covered paths differ, as shown in Figure 4. Although
the stateful fuzzing is still covering stateless code blocks, SymCC in
the stateless mode can cover more such code blocks because it can
execute many more fuzzing iterations in the same time. By contrast,
both the NESFuzzer-MOpt and NESFuzzer-SymCC fuzzers cover
stateful code blocks that cannot be covered by SymCC alone.

5.3 Impact of Automatic Seed Generation

We also examine how the test seeds generated from NESFuzzer
affect the fuzz testing coverage. In particular, we compare two
different test seeds: 1) a seed consisting of a set of IPv6 packets
extracted from a network of Contiki-NG nodes, and 2) a seed auto-
matically generated by recording a dry-run from NESFuzzer when
generating states of various protocols. For each seed set, we run

Figure 5: Timeline of attained coverage map density when
fuzzing Contiki-NG, showing the arithmetic mean and
90% confidence intervals for each setup. NESFuzzer-SymCC
achieves the highest coverage leveraging both stateful and
hybrid fuzzing.

a 24-hour fuzzing session with MOpt and NESFuzzer, and collect
path coverage data for the Contiki-NG network stack.

Figure 6 shows the timeline of two 24-hour experiments with
NESFuzzer-MOpt using two different seed sets. The first one con-
sists of IPv6 packets extracted from PCAP files in a simulated
Contiki-NG network. The second one is generated by NESFuzzer
as explained above. We find that the generated seed set yields a
considerably higher path coverage over time. Initially, both exper-
iments quickly discover a majority of the paths that are reached
over the full time, but with the plain IPv6 seed, the fuzzer struggles
to find certain code areas through random mutations after about
an hour has passed. By contrast, the NESFuzzer-generated seed
helps the fuzzer to make progress for a longer time using the set of
correctly formed packets for the protocol states configured for the

Covered paths

—— NESFuzzer-generated seed
| = Captured IPv6 seed

oh 4h gh 12h 16h 20h 24h
Time

Figure 6: Path coverage attained over time when fuzzing with
NESFuzzer-MOpt using a stateless IPv6 seed compared to
using a NESFuzzer-generated seed. The seed set generated by
NESFuzzer results in a considerably higher path coverage.

experiment. After 24 hours had passed, the NESFuzzer-generated
seed covered approximately 34% more paths.

5.4 Execution Performance

We compare the performance metrics of a) stateless fuzzing with
one SymCC process, one AFL controller process, and one AFL
worker processes (Stateless SymCC), b) stateful fuzzing with MOpt
using one controller process and two worker processes similar to
AFL (NESFuzzer-MOpt), and c) stateful fuzzing with one SymCC
process, one AFL controller process, and one AFL worker process
(NESFuzzer-SymCC). Each experiment is repeated ten times over
a duration of ten minutes per repetition, and using the same in-
strumented executable. We use a considerably shorter duration for
these experiments because the execution performance stabilizes
quickly after a few seconds in the startup phase. Table 2 shows the
execution speed and stability achieved in the experiments.

5.4.1 Execution Speed. We find that the regular SymCC session
without state generation yields the fastest execution times, as it
does not have the overhead of exchanging packets with the state
controller to set up network stack state. While the NESFuzzer-
enabled experiments execute considerably slower in AFL’s default
mode, they are both able to discover three vulnerabilities (see Sec-
tion 5.5) that the Stateless SymCC alone could not find. Although
a faster execution speed ensures that more inputs can be injected
into the SUT, it might not lead to a higher coverage compared to
what a slower, but more effective fuzzer can achieve. In particu-
lar, this is the case when the SUT has state-dependent code paths.
Hence, we trade off speed for the capability to generate states in
the SUT. For this reason, it can be beneficial to first test an SUT
using stateless fuzzing with a considerably higher execution speed,
and then switch to stateful fuzzing once the fuzzer has exhausted
its capability to find code paths.

A major improvement of the execution speed is possible in some
cases, however. When using an AFL-based fuzzer, one might be able
to use its deferred mode [39]. In the default AFL mode, it executes

Nicolas Tsiftes and Thiemo Voigt

the SUT once and then forks this process for each fuzzing iteration.
By deferring this fork point to come after the state generation has
finished, the child process can resume execution from that point.
Hence, as shown in Table 2, one can avoid the state generation
overhead if a constant state is set for the fuzzing session. The
applicability of this mode depends on the SUT, as the SUT can
malfunction if it allocates certain system resources such as timers
and threads before the deferred fork point. While we use deferred
mode only for constant state settings, it would be interesting for
future work to integrate this mode with NESFuzzer functionality
use different states within a session.

5.4.2 Stability. Furthermore, we examine the stability of the fuzzing
experiments. This metric is a measurement of the consistency in the
code paths executed for identical inputs. It is measured in AFL-based
fuzzers when a new test case is generated. In Table 2, we see that
all three alternatives achieved a stability of over 99.7% during the
experiments. Hence, we were able to reduce the non-determinism
as described in Section 4.3.3, allowing coverage-guided fuzzers to
function properly with the coverage data from the SUT.

5.5 Discovered Vulnerabilities

In our experiments with NESFuzzer on Contiki-NG, we discovered
three zero-day vulnerabilities in the RPL and TCP implementations
that could not be found with MOpt or SymCC alone. Each of these
vulnerabilities have now been fixed in the main Contiki-NG reposi-
tory. Additionally, we could re-discover the vulnerability described
in CVE-2020-17437 regarding a non-validated TCP urgent pointer
value. We briefly describe the three vulnerabilities below.

5.5.1 TCP Offset Processing Vulnerability. During our fuzzing ex-
periments with NESFuzzer, we found a state-dependent vulnerabil-
ity (CVE-2021-21281) that concerns non-validated data in the TCP
header. The problem exists in the uip_process function in Contiki-
NG’s os/net/ipv6/uip6.c module. The TCP offset field in the
TCP header is not verified, making it possible to cause an overflow
of the uip_len variable. Thereafter, the execution can reach the
os/net/ipv6/tcp-socket.c module, where the TCP payload is
copied into a user-supplied buffer. The amount of data copied is
determined by the value in the overflowed uip_len variable, and
can therefore lead to a buffer overflow.

In order to reach the vulnerable code through fuzzing, however,
the TCP module must have at least one connection in established
state. Additionally, the fuzzer must mutate a packet such that all
fields from the IPv6 and the TCP header are correct to prevent
the network stack from dropping the packet while processing and
validating the header fields.

5.5.2 RPL Target Option Vulnerability. The second state-dependent
vulnerability found (CVE-2021-32771) with NESFuzzer is in the
processing of RPL DAO messages. The bug manifests itself when
ContikiRPL operates in storing mode, and has joined an RPL in-
stance. When an incoming DAO packet contains an RPL Target
Option, an IPv6 address prefix should be copied from an offset in
the packet into a local variable. The prefix length is specified in a
different field, but its value is not validated before supplying the
value as an argument to the memcpy call, thereby making it possible
to overflow the buffer and cause Contiki-NG to crash.

NESFuzzer : Stateful Fuzz Testing of loT Network Stacks

Table 2: Run-time performance using stateful fuzzing with either NESFuzzer-MOpt or NESFuzzer-SymCC compared to stateless
fuzzing with SymCC. The stateless fuzzing achieves a considerably higher execution speed in the default AFL mode, but this
overhead is removed when using AFL’s deferred mode to reuse the SUT process state.

Stateless SymCC | NESFuzzer-MOpt | NESFuzzer-SymCC
Exec/s with default mode 3307 + 113 38.61 + 2.68 35.85 £ 0.81
Exec/s with deferred mode 6919 + 54 5599 + 120 6854 + 128
Min. stability 99.87% 99.73% 99.84%

5.5.3 Unaligned Memory Access in RPL Option Processing. Lastly,
our stateful fuzzing experiments led to the discovery of an un-
aligned memory access vulnerability in the processing of RPL op-
tions (CVE-2024-47181) within an IPv6 extension header. This can
enable an attacker to trigger undefined behavior in the system. Once
the Contiki-NG device has joined an RPL instance, this vulnerability
can be triggered by prepending the RPL option with either a PAD1
or PADN option [11] that inserts an odd number of bytes.

6 Related Work

In the following, we discuss the related literature pertaining to
stateful protocol fuzzing and IoT software fuzzing.

6.1 Stateful Protocol Fuzzing

The fuzzing community has identified the need to support fuzzing
of network protocol implementations. A primitive way of achieving
such fuzzing—at least partially—is to build custom fuzzing harnesses
for each SUT that generate state by accessing the SUT’s internal data
structures, calling functions from its public interfaces, or injecting
specific sequences of inputs. Yet, this approach requires intricate
knowledge of the SUT to set up the harness, and the manual effort
required can be tedious and fail to cover a satisfactory set of states.

AFLNet introduces a more generalized method to enable fuzzing
of a variety of network servers over sockets [29]. AFLNet infers
protocol states using status codes parsed from protocol messages,
and uses AFL’s mutation of messages to try to reach new states. On
the flip side, it is less suitable for protocols that rely on temporal
information or lack status codes. To support a new protocol, one
has to implement certain parts of the protocol parsing in order to
extract state indicators in AFLNet.

Fuzzer in the Middle (FitM) enables fuzzing of stateful client-
server communication by extending AFL’s QEMU mode with a
network emulation layer [24]. Its network emulation layer allows it
to avoid the overhead of system calls used by earlier methods such
as AFLNet. To further improve the performance, it uses process
state snapshots that can be restored in each iteration rather than
regenerating the state through message exchanges. NSFuzz employs
static analysis of the SUT to infer state models [32]. It focuses on
identifying two parts of protocol implementations: (1) the network
event loop that processes input messages, and (2) state variables.

In contrast with these methods, NESFuzzer targets full IoT net-
work stacks rather than single protocol implementations, and en-
ables domain-aware and programmable state generation to test
multiple protocols in a single fuzzing session. Furthermore, NES-
Fuzzer decouples the fuzzer from the state generation, enabling it
to be used with different fuzzers as the state of the art progresses.

In recent work, Amusuo et al. propose a framework for testing
the packet validation functionality of embedded network stacks in
different states [4]. Instead of relying on fuzzing to generate input
data, they generate correctly structured packets with invalid header
field values, and use sanitizer tools to detect errors. The states are
generated using an extended version of PacketDrill [8], a tool that
supports scriptable packet exchanges for testing network stacks. We
view this method as complementary because NESFuzzer is focused
on combining different fuzzers with a decoupled state generation
mechanism. This allows NESFuzzer to leverage the capabilities of
fuzzers, such as mutation strategies, code coverage feedback, and
combinations with symbolic execution.

6.2 IoT Software Fuzzing

Various methods have been developed for fuzz testing IoT software,
including full firmwares that can be deployed on real hardware.
Yet fuzzing IoT software can be challenging because such software
typically executes on resource-constrained devices, which reduces
the set of applicable tools. Furthermore, there is typically a lack of
visibility into the IoT firmware of different vendors, which precludes
fuzzing-aware binary instrumentation. For this reason, researchers
have proposed blackbox fuzzing methods that rely on messages
being sent to IoT devices over the air, and monitoring changes in the
internal state of the IoT firmware. IoTFuzzer replays a sequence of
captured packets before injecting a fuzzed packet [9]. Alternatively,
correctly formed packets can be inferred by mutating bytes one-
by-one, sending the data to the SUT and observing the response,
as demonstrated by Snipuzz [15]. Zhang et al. use large language
models to generate fuzzing inputs for system calls in embedded
operating systems [40].

Another possible method for IoT firmware fuzzing is to com-
bine fuzzing tools with hardware emulation. Firm-AFL enables fuzz
testing of firmware by a method called augmented process emu-
lation [41], which leverages user-mode emulation for efficiency.
Scharnowki et al. propose a firmware-aware fuzzer that uses hard-
ware emulation and considers the various input streams that need
to be processed by the system [34]. This method supports type-
aware mutations for different input streams, as opposed to a single
binary input for a chosen fuzzing entry point in the system.

While these methods are effective for discovering bugs in firmware,
the execution speed can be hampered by using hardware emulation
or sending mutated messages over the air. By contrast, NESFuzzer
enables stateful and hybrid fuzzing of IoT network stacks, but re-
quires an SUT that can execute in native (POSIX) mode. We consider
these methods to be complementary to our work because fuzzing
the firmware executing on IoT devices can cover code that is un-
available in the native platform, such as a device driver.

7 Conclusions

In this paper, we have designed and implemented NESFuzzer, a
system for stateful fuzzing of IoT network stacks. The key idea
of NESFuzzer is to decouple the fuzzer from the state generation
framework through a network-based architecture. This decoupling
enables fuzzing tool operators to leverage a plethora of state-of-the-
art fuzzers, while generating different states flexibly for various IoT
protocol implementations in embedded network stacks.

As shown in our evaluation using the low-power IPv6 stack of the
Contiki-NG operating system as a case study, NESFuzzer increases
the code coverage considerably in the modules that implement the
network and transport layers. Even in the the slowest mode of
re-generating state for each fuzzing iteration, NESFuzzer provides
new coverage. Yet, when using an optimization such as AFL’s de-
ferred mode, this state generation does not need to take place in
each iteration, making the overhead negligible. Through our exper-
iments, we found that the stateful multi-protocol fuzzing method of
NESFuzzer enabled us to discover three new security vulnerabilities
in state-dependent parts of the TCP and RPL implementations of
Contiki-NG. Furthermore, we were able to re-discover a known
vulnerability in the TCP implementation. The results demonstrate
that NESFuzzer’s ability to generate protocol states for fuzzing can
improve test coverage and reveal zero-day vulnerabilities.

Acknowledgments

This work was partly funded by the Swedish Foundation for Strate-
gic Research and by Digital Futures.

References

[1] [n.d.]. IwIP - A Lightweight TCP/IP Stack. Web page. https://savannah.nongnu.
org/projects/lwip/ Visited 2025-02-18.

[2] [n.d.]. syzkaller. Web page. https://github.com/google/syzkaller Visisted
2025-02-18.

[3] [n.d.]. Zephyr Project. Web page. https://zephyrproject.org/ Visited 2025-02-18.

[4] P.C. Amusuo, R. A. Calvo Méndez, Z. Xu, A. Machiry, and J. C. Davis. 2023.
Systematically Detecting Packet Validation Vulnerabilities in Embedded Net-
work Stacks. In 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). Kirchberg, Luxembourg.

[5] A. Andronidis and C. Cadar. 2022. SnapFuzz: High-Throughput Fuzzing of
Network Applications. In 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA) (Virtual, South Korea).

[6] E.Baccelli, C. Giindogan, O. Hahm, P. Kietzmann, M. S. Lenders, H. Petersen,
K. Schleiser, T. C. Schmidt, and M. Wihlisch. 2018. RIOT: An Open Source
Operating System for Low-End Embedded Devices in the IoT. IEEE Internet of
Things Journal 5, 6 (2018), 4428-4440.

[7] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. 1995. Improving TCP/IP
Performance over Wireless Networks. In The 1st Annual International Conference
on Mobile Computing and Networking (MobiCom). Berkeley, CA, USA.

[8] N.Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan, N. Dukkipati, H. Chu,
A. Terzis, and T. Herbert. 2013. packetdrill: Scriptable network stack testing,
from sockets to packets. In USENIX Annual Technical Conference (USENIX ATC).

[9] J.Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. Lau, M. Sun, R. Yang, and K.
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In Network and Distributed System Security Symposium (NDSS).
San Diego, CA, USA.

[10] J. De Ruiter and E. Poll. 2015. Protocol State Fuzzing of TLS Implementations. In
24th USENIX Security Symposium. Washington, DC, USA.

[11] S.Deering and R. Hinden. 1998. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460. IETF.

[12] D. dos Santos, S. Dashevskyi, J. Wetzels, and A. Amri. 2020. AMNESIA:33.
https://www.forescout.com/research-labs/amnesia33/.

[13] A.Dunkels, B. Grénvall, and T. Voigt. 2004. Contiki - a Lightweight and Flexi-
ble Operating System for Tiny Networked Sensors. In Proceedings of the IEEE
Workshop on Embedded Networked Sensor Systems (Emnets). Tampa, FL, USA.

[14] T. Winter (ed.), P. Thubert (ed.), A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, JP. Vasseur, and R. Alexander. 2012. RPL: IPv6 Routing Protocol for

[15

[16

(17

(19]

[20]

[25]
[26]

[27]

[41

Nicolas Tsiftes and Thiemo Voigt

Low-Power and Lossy Networks. RFC 6550. IETF.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xiang. 2021.
Snipuzz: Black-box Fuzzing of IoT Firmware via Message Snippet Inference. In
The ACM Conference on Computer and Communications Security (CCS). Virtual
event, Republic of Korea.

A. Francillon and C. Castelluccia. 2008. Code injection attacks on harvard-
architecture devices. In 15th ACM conference on Computer and communications
security (CCS).

J. Hui and D. Culler. 2008. IP is Dead, Long Live IP for Wireless Sensor Networks.
In Proceedings of the International Conference on Embedded Networked Sensor
Systems (ACM SenSys). Raleigh, NC, USA.

H.-S. Kim, S. Kumar, and D. Culler. 2019. Thread/OpenThread: A Compromise in
Low-Power Wireless Multihop Network Architecture for the Internet of Things.
IEEE Communications Magazine 57, 7 (2019), 55-61.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. 2018. Evaluating Fuzz
Testing. In 25th ACM Conference on Computer and Communications Security
(CCS). Toronto, Canada.

J. Ko, A. Terzis, S. Dawson-Haggerty, D. Culler, J. Hui, and P. Levis. 2011. Con-
necting Low-Power and Lossy Networks to the Internet. IEEE Communications
Magazine 49, 4 (2011), 96-101.

S. Kumar, M. Andersen, H.-S. Kim, and D. Culler. 2020. Performant TCP for Low-
Power Wireless Networks. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). Santa Clara, CA, USA.

Y. Li, S. Ji, Y. Chen, S. Liang, W. Lee, Y. Chen, C. Lyu, C. Wy, R. Beyah, P. Cheng,
K. Lu, and T. Wang. 2021. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven
Platform for Evaluating Fuzzers. In 30th USENIX Security Symposium.

C. Lyu, S. Ji, C. Zhang, Y. Li, W-H. Lee, Y. Song, and R. Beyah. 2019. MOPT:
Optimized Mutation Scheduling for Fuzzers. In 28th USENIX Security Symposium.
D. Maier, O. Bittner, M. Munier, and J. Beier. 2022. FitM: Binary-Only Coverage-
Guided Fuzzing for Stateful Network Protocols. In Workshop on Binary Analysis
Research (BAR). San Diego, CA, USA.

B. P. Miller, L. Fredriksen, and B. So. 1990. An Empirical Study of the Reliability
of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990), 32-44.

G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944. IETF.

G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and N. Tsiftes.
2022. The Contiki-NG open source operating system for next generation IoT
devices. SoftwareX 18 (2022), 101089.

B. S. Pak. 2012. Hybrid Fuzz Testing: Discovering Software Bugs via Fuzzing and
Symbolic Execution. Master’s thesis. School of Computer Science, Carnegie
Mellon University. CMU-CS-12-116.

V.-T. Pham, M. Béhme, and M. Roychoudhury. 2020. AFLNet: A Greybox Fuzzer
for Network Protocols. In IEEE International Conference on Software Testing,
Verification and Validation (ICST). Porto, Portugal.

S. Poeplau and A. Francillon. 2020. Symbolic execution with SymCC: Don’t
interpret, compile!. In 29th USENIX Security Symposium.

C. Poncelet, K. Sagonas, and N. Tsiftes. 2022. So Many Fuzzers, So Little Time
- Experience from Evaluating Fuzzers on the Contiki-NG Network (Hay)Stack.
In 37th IEEE/ACM International Conference on Automated Software Engineering
(ASE). Rochester, MI, USA.

S. Qin, F. Hu, B. Zhao, T. Yin, and C. Zhang. 2022. NSFuzz: Towards Efficient
and State-Aware Network Service Fuzzing. In International Fuzzing Workshop
(FUZZING). San Diego, CA, USA.

R Rohith, M. Moharir, G Shobha, et al. 2018. SCAPY-A powerful interactive packet
manipulation program. In International Conference on Networking, Embedded and
Wireless Systems (ICNEWS). Bangalore, India.

T. Scharnowski, S. Worner, F. Buchmann, N. Bars, M. Schloegel, and T. Holz.
2023. HOEDUR: embedded firmware fuzzing using multi-stream inputs. In 32nd
USENIX Security Symposium. Anaheim, CA, USA.

K. Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for open
source software. In 26th USENIX Security Symposium. Vancouver, BC, Canada.
Z. Shelby, K Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). RFC 7252. IETF.

W. Eddy, Ed. 2022. Transmission Control Protocol (TCP). RFC 9293. IETF.

T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang, S. Glaser,
and K. Pister. 2012. OpenWSN: A Standards-Based Low-Power Wireless Develop-
ment Environment. Transactions on Emerging Telecommunications Technologies
23,5 (2012), 480-493.

M. Zalewski. [n. d.]. American Fuzzy Lop. Web page. http://lcamtuf.coredump.
cx/afl/ Visisted 2025-02-18.

Q. Zhang, Y. Shen, J. Liu, Y. Xu, H. Shi, Y. Jiang, and W. Chang. 2024. ECG:
Augmenting Embedded Operating System Fuzzing via LLM-Based Corpus Gen-
eration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 43, 11 (2024), 4238-4249.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. 2019. FIRM-AFL:
High-Throughput Greybox Fuzzing of IoT Firmware via Augmented Process
Emulation. In 28th USENIX Security Symposium. Santa Clara, CA, USA.

https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://github.com/google/syzkaller
https://zephyrproject.org/
https://www.forescout.com/research-labs/amnesia33/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzz Testing
	2.2 Embedded Network Stacks

	3 NESFuzzer Design
	3.1 Fuzzing Procedure
	3.2 Protocol State Generation Phase
	3.3 Protocol State Models
	3.4 State Selection Policies
	3.5 Test Seed Generation

	4 Network Stack Fuzzing
	4.1 SUT Requirements and Portability
	4.2 Fuzzing Harness
	4.3 OS-Specific Functionality

	5 Evaluation
	5.1 Experimental Setup
	5.2 Code Coverage
	5.3 Impact of Automatic Seed Generation
	5.4 Execution Performance
	5.5 Discovered Vulnerabilities

	6 Related Work
	6.1 Stateful Protocol Fuzzing
	6.2 IoT Software Fuzzing

	7 Conclusions
	References

