Grammar-Based Testing for Little Languages

An Experience Report with Student Compilers

Phillip van Heerden
Stellenbosch University
Stellenbosch, South Africa
18962378@sun.ac.za

Konstantinos Sagonas
Uppsala University
Uppsala, Sweden
kostis@it.uu.se

Abstract

We report on our experience in using various grammar-based
test suite generation methods to test 61 single-pass compil-
ers that undergraduate students submitted for the practical
project of a computer architecture course.

We show that (1) all test suites constructed systematically
following different grammar coverage criteria fall far be-
hind the instructor’s test suite in achieved code coverage,
in the number of triggered semantic errors, and in detected
failures and crashes; (2) a medium-sized positive random
test suite triggers more crashes than the instructor’s test
suite, but achieves lower code coverage and triggers fewer
non-crashing errors; and (3) a combination of the systematic
and random test suites performs as well or better than the
instructor’s test suite in all aspects and identifies errors or
crashes in every single submission.

We then develop a light-weight extension of the basic
grammar-based testing framework to capture contextual
constraints, by encoding scoping and typing information
as “semantic mark-up tokens” in the grammar rules. These
mark-up tokens are interpreted by a small generic core en-
gine when the tests are rendered, and tests with a syntactic
structure that cannot be completed into a valid program by
choosing appropriate identifiers are discarded. We formalize
individual error models by overwriting individual mark-up
tokens, and generate tests that are guaranteed to break spe-
cific contextual properties of the language. We show that a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE °20, November 16—17, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8176-5/20/11...$15.00
https://doi.org/10.1145/3426425.3426946

Moeketsi Raselimo
Stellenbosch University
Stellenbosch, South Africa
22374604@sun.ac.za

Bernd Fischer
Stellenbosch University
Stellenbosch, South Africa
bfischer@sun.ac.za

fully automatically generated random test suite with 15 error
models achieves roughly the same coverage as the instruc-
tor’s test suite, and outperforms it in the number of triggered
semantic errors and detected failures and crashes. Moreover,
all failing tests indicate real errors, and we have detected
errors even in the instructor’s reference implementation.

CCS Concepts: « Software and its engineering — Parsers;
Software testing and debugging,.

Keywords: Structure-aware fuzzing, semantic fuzzing, prop-
erty-based testing, random testing.

ACM Reference Format:

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas,
and Bernd Fischer. 2020. Grammar-Based Testing for Little Lan-
guages: An Experience Report with Student Compilers. In Proceed-
ings of the 13th ACM SIGPLAN International Conference on Software
Language Engineering (SLE °20), November 16—17, 2020, Virtual, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3426425.
3426946

1 Introduction

Compilers for “little languages” [2] such as domain-specific
languages or languages used in compiler courses still need
testing. Since little languages typically lack a large user base,
the construction of appropriate test suites falls back to their
developers, which puts a large burden on them.

Such test suites can also be generated automatically from
a context-free grammar (CFG) for the language. This is the
basic tenet of grammar-based testing and fuzzing. However,
fuzzing is primarily aimed at finding crashes and not func-
tional errors, and grammars play only a minor role in (func-
tional) software testing [11]. It is therefore unclear to what
extent grammar-based testing is suitable for little languages.

In this paper, we address this issue. We report on our
experience in using a variety of test suites automatically
generated from CFGs to test simple compilers written by
a cohort of 61 undergraduate students, and compare their
performance (measured both in achieved code coverage and
number of failures and crashes triggered) against the instruc-
tor’s evaluation and marking test suite.

https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1145/3426425.3426946

SLE ’20, November 16-17, 2020, Virtual, USA

The ultimate question behind our research is whether we
can automatically generate from a grammar a test suite of
the same quality as a carefully hand-crafted one. We first
focus on purely syntactic test suites where we only have a
syntactic oracle, i.e., only know whether the tests are syntac-
tically valid or not, and experimentally investigate how well
different purely syntactic test suite constructions perform.
In particular, we address two research questions:

RQ1: Do purely syntactic test suites have the same quality
as a hand-crafted test suite?

RQ2: Do purely syntactic test suites systematically con-
structed by the cover algorithm achieve better system
coverage and find more errors than purely syntactic
random test suites of similar size?

To address RQ1 and RQ2, we generate test suites using a
generic cover algorithm with different grammar coverage
criteria, including the new deriv-criterion that we introduce
in this paper (Definition 2.1). In Section 4, we show that none
of these test suites achieves code coverage above 68%, which
is considered to be insufficient in software engineering, and
that individually they all fall far behind the instructor’s test
suite in the achieved code coverage and the numbers of
triggered semantic errors and detected failures and crashes.
However, a combined positive/negative test suite triggers
failures in and crashes every single submission, and thus
outperforms the instructor’s test suite in that respect.

In the same section, we show that random test suites of the
same size outperform systematically generated test suites for
all but the smallest sizes. We also show that larger random
test suites push code coverage up to 75% and outperform
the instructor’s test suite in the number of crashes triggered,
but underperform it in the number of non-crashing errors.
Finally, a combination of the systematic and random test
suites performs in all aspects as well as or better than the
instructor’s test suite.

We then address the main limitation of syntactic test suites,
the lack of a more precise semantic oracle. We can thus use
these test suites only for syntax and crash testing. Any func-
tional testing requires tests that either conform to the con-
textual constraints of the language—principally, its scoping
and typing rules—or break them in a well-defined way. We
address this issue with two further research questions:

RQ3: How do we encode contextual constraints into the
grammar and integrate them with test suite generation
to create semantic test suites?

RQ4: How do we generate tests with specific failure modes?

In Section 5, we develop a light-weight extension of the ba-
sic grammar-based testing framework to capture contextual
constraints, by encoding scoping and typing information
as “semantic mark-up tokens” in the grammar rules. These
mark-up tokens are interpreted by a small generic core en-
gine when the tests are rendered, and tests with a syntactic
structure that cannot be completed into a valid program by

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

choosing appropriate identifiers are discarded. We formalize
individual error models by overwriting individual mark-up
tokens, and generate tests that are guaranteed to break spe-
cific contextual properties of the language. We show that a
fully automatically generated random test suite with 15 error
models achieves roughly the same coverage as the instruc-
tor’s test suite, and outperforms it in the number of detected
failures and crashes. Moreover, all failing tests indicate real
errors, and we have detected errors in the instructor’s refer-
ence implementation.

2 Grammar-Based Test Suite Construction

A context-free grammar is a four-tuple G = (N, T, P, S) with
NNT=0,V=NUT,Pc NxV* and S € N. We use
A, B,C, ... for non-terminals N, a,b,c, ... for terminals T,
X,Y,Z for grammar symbols V, w, x, y, z for words over T*,
and @, B, v, .. . for sentential forms over V*, with ¢ denoting
the empty string. We write A — y for arule (A,y) € P. We
use aAf = ayp to denote that @A produces ayp by appli-
cation of the rule A — y € P and use =" for its reflexive-
transitive closure.

For our evaluation, we use test suites that satisfy several
different grammar coverage criteria such as rule and cdrc
coverage [18]. We use both positive (i.e., syntactically cor-
rect) and negative tests; the latter are guaranteed to contain
exactly one syntax error [27].

For the construction of positive tests we use a generic
cover algorithm that follows the approaches proposed by
Fischer et al. [9] and Havrikov and Zeller [11]. Its basic idea
is to (i) iterate over all symbols X € V, (ii) embed X, i.e.,
compute a minimal derivation S =" aXw, (iii) cover X, i.e.,
compute a set of minimal derivations X =" y that conform
to the criterion, and (iv) convert the sentential form into a
word, i.e., compute a minimal derivation ayw =" w where
each non-terminal A in ayw is replaced by its minimal yield
wy. Note that this algorithm is by construction biased to-
wards very short tests because it uses of minimal derivations
in all steps. Note further that different covering derivations
may still lead to the same test case.

We use the standard coverage criteria symbol, rule, and
cdre [18] as well as their extension to k-step derivations (or
k-path coverage [11]) as arguments to the cover algorithm.
In addition, we also use derivable pair coverage, which can
intuitively be thought of as a fixpoint version of k-step cov-
erage, since it covers the shortest derivation between any
two symbols irrespectively of its length.

Definition 2.1 (Derivable Pair Coverage). LetG = (N, T, P, S)
be a grammar and V = N U T, A word w covers a pair
(X,Y) e VXVIifS =% aXf =" ayY§f =" w. TS C L(G)
satisfies derivable pair coverage (w.r.t. G) if each pair (X, Y)
with X =" uYv for some p, v is covered by a word w € TS.

Finally, we also generate tests according to a simultane-
ous derivation relation =, where X;...X;, = y;...yp if

Grammar-Based Testing for Little Languages

X; > y; € Pforall X; € Nandy; = X; forall X; € T.
We also denote its k-fold repetition = by bfs, because
it amounts to k “breadth-first rounds” of rule applications.
In combination with the cover algorithm sketched above,
bfs, explores deeper derivations than a normal breadth-first
search, because separate “bfs waves” are started from each
non-terminal symbol.

As common in grammar-based fuzzing, we also use ran-
dom derivations. More specifically, we construct a random
subset of the = derivations, which allows us to explore
longer derivations than full bfs,. After k iterations, we re-
place the unexpanded non-terminals with their minimal
yield, as in the generic cover algorithm. Note that this setup
may introduce some bias, in particular towards the rules
used in the yield construction. In addition, we use a modified
derivation construction where a proposed rule is only applied
with a user-defined rule-specific probability; if it is rejected,
the non-terminal remains as is, but may be expanded in the
next iteration.

For the construction of syntactically negative tests, we use
token- and rule-mutation algorithms [27]. We extended to-
ken mutation to use arbitrary n-grams rather than poisoned
pairs (i.e., bigrams).

We generally do not address lexical aspects in the test
suites and, unless stated otherwise, the generated programs
do not contain comments or whitespace other than a single
space between tokens to prevent accidental token pasting,
and all structured tokens are expanded into their shortest
instance (e.g., all ids are a).

3 Context and Experimental Setup

For our evaluation, we used the compilers for a small imper-
ative language that second-year computer science students
developed as practical project in a mandatory computer ar-
chitecture course at Stellenbosch University. The project ran
throughout the entire semester and accounted for 25% of the
overall course marks. We could not access individual project
marks, but the average course mark of the 61 students in
our cohort is 80%. The instructor has taught the course with
the same general set-up for more than five years, and has
made only minor changes to the syntax and semantics of the
example languages.

The course uses compilers to illustrate low-level program-
ming concepts like memory allocation and addressing, byte
code and assembly code, etc. The students must therefore
use the C programming language. Since this is their first
exposure at university to C, they typically struggle with this
course. Below, we give some details about the setup.

Language. Figure 1 shows the EBNF grammar of the AMPL
anguage used for the project. Terminal symbols are typeset
in bold typewriter and non-terminals in italics; structured
tokens are specified using a lex-like notation and typeset in
normal typewriter.

SLE ’20, November 16-17, 2020, Virtual, USA

prog — programid: fdef* main : body
fdef — 1id: takes vdecl (; vdecl)*
returns (type | nothing) body
vdecl — id(, id)* : type
type — (boolean | integer) array?
body — decls? stmts end
decls — wvdecl (; vdecl)*
stmts — chillax | stmt (; stmt)*
stmt — assign | call | return | input | output | case | loop
assign — letid ([simple])? = (expr | array simple)
call — doid Cexpr (, expr)*)
return — pop expr?
input — inputid (L simple])?
output — output (string | expr) (. (string | expr))*
case ~ — when case expr : stmts end
(case expr : stmts end)*
(otherwise : stmts end)?
loop — while expr : stmts end
expr — simple (relop simple)?
relop — =|>=|>|<=|<]| /=
simple — =7 term (addop term)*

addop — - |or | +
term — factor (mulop factor)*
mulop — and | / | * | rem
factor — id (Lsimple] | Cexpr (., expr)*))?
| num | Cexpr) | not factor | true | false
id — [a-zA-Z_][a-zA-Z_0-9]*
num — [0-9][0-97*
string — "([a-zA-Z_0-9 '#-/:-2] | \" |\t | \n [\\)*"

Figure 1. AMPL grammar as specified by the instructor.

AMPL has only the basic imperative control-flow con-
structs (albeit in an idiosyncratic syntax), including proce-
dure and function definitions and calls, an elementary but
strict type system with two base types (without implicit type
coercions) and one-dimensional arrays over these, and a
rudimentary visibility system. There is only a single name-
space, and multiple definitions with different types are not
allowed. Procedures (resp. functions) can only be declared at
the top-level and ahead of global variables. Procedures and
global variables are in the same global scope; parameters and
procedure-local variables are in the same local scope, and
local names cannot shadow global names.

Task. The overall goal of the project is to implement in C
a compiler from AMPL into Java bytecode suitable for the
JASMIN bytecode assembler (http://jasmin.sourceforge.net/).

The students were provided with a 60-page language spec-
ification document that contains the CFG for AMPL in EBNF.
The contextual constraints, in particular the scoping and
typing rules, are specified informally and illustrated with
examples.

The project prescribed a rigid approach and environment.
The students were required to implement from scratch a one-
pass, recursive descent compiler that aborts on the first error
it encounters, irrespective of whether this is at the lexical,

http://jasmin.sourceforge.net/

SLE ’20, November 16-17, 2020, Virtual, USA

Syntax errors:

(a) <token> expected, but found <token>

(b) type expected, but found <token>

(c) statement expected, but found <token>

(d) factor expected, but found <token>

(e) array allocation or expression expected, but found <token>
(f) expression or string expected, but found <token>

Scope errors:

(g) multiple definition of <id>
(h) the identifier <id> is unknown

Type errors:

(i) <id> is not a function

(j) <id> is not a procedure

(k) <id> is not a variable

(1) <id> is not an array

(m) <op> is an illegal array operation

(n) scalar expected instead of <id>

(o) 1incompatible types for array allocation
(p) incompatible types for array index of <id>
(q) incompatible types for array size of <id>
(r) incompatible types for assignment to <id>
(s) 1incompatible types for case guard

(t) incompatible types for while guard

(u) incompatible types for operator <op>

(v) incompatible types for unary minus

(w) incompatible types for not

(x) 1incompatible types for parameter <n> of <id>
(y) too few arguments for call of <id>

(z) too many arguments for call of <id>

Figure 2. AMPL error messages as specified by instructor.

syntactic, or semantic level. Scaffolding code (in particular
error handlers) and architectural skeletons were given by
the instructor. Figure 2 lists all expected error messages.
Their use was enforced by an automated build system and
marking script, so that the project submissions all have the
same standard architecture: i) a main module containing the
parse functions with the corresponding semantic actions;
ii) a scanner; iii) a symbol table; and iv) a code generator that
emits the bytecodes.

Subject Programs. The overall course enrollment was 94
students. We removed 33 submissions that did not build or
run in the prescribed environment. The experimental basis
for our evaluation is therefore 61. The average size of each
student submission is approximately 1300 lines of C code.

Baseline Test Suite. We compare our automatically gen-
erated test suites (see Section 4 and Section 5 for details)
against the test suite manually constructed by the instructor.
This test suite contains 48 tests with syntax errors and 182
syntactically valid tests, of which 103 satisfy all contextual
constraints. It includes all tests used for marking, but was not
released to the students before submission. It was developed
over several years, adapting the tests to the annual syntax
and semantics variations.

Data Collection. We used the instructor’s build script to
compile the submissions with GCC 8.3.0 and used gcov 8.3.0
to collect coverage information for each individual submis-
sion; we report the aggregate coverage over test suites, not
over individual tests. The AMPL compiler runtimes varied
over the different submissions and test suites, but are on av-
erage between 0.1 and 0.2 seconds per test. Using test suites

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

with several thousands of tests therefore poses no problem,
but much larger test suites clearly induce a heavy compu-
ational load. We performed the experiments in a Docker
container to ensure consistent results. We also collected the
error outputs to measure “semantic” coverage and to identify
which part of the implementation causes errors. We manu-
ally inspected outputs not conforming to the required error
message format in Fig. 2 and corrected for near misses; we
took all other messages as evidence of a system crash.

4 Syntactic Testing

We call a test suite construction method syntactic if the only
guaranteed claim that its tests allow is whether they are
syntactically valid or not, i.e., if it embodies a syntactic ora-
cle. In this section, we experimentally investigate how well
different purely syntactic test suites perform. The results of
our experiments are summarized in Table 1 and Fig. 3; we
discuss them in more detail below.

4.1 Systematic Coverage-Based Positive Test Suites

Grammar-based testing and fuzzing makes a high-level as-
sumption, namely that better input space coverage gives
better system coverage [11]. We look at this assumption and
investigate how the positive test suites (i.e., containing only
syntactically correct tests) perform, both relative to each
other and compared to the positive tests from the instruc-
tor’s test suite (denoted as instr*). We therefore address two
refinements of RQ1 (see Section 1):

RQ1a: What improvement in system-wide code coverage
and error detection do we get for larger systematic
coverage of the grammar?

RQ1b: Which systematic grammar coverage criteria give
the best results relative to the size of the test suite?

Test Suites. We generated test suites using the generic
cover algorithm of Section 2 with different criteria. We use
k-step coverage for 0 < k < 4 (denoted by symbol, rule,
cdre, steps, and stepy, respectively), derivable pair coverage
(Definition 2.1) denoted by deriv, and k-level full breadth-first
search coverage for k = 2 and k = 3 (denoted by bfs; and bfs,
respectively). lexical denotes the full two-level bfs coverage
over a grammar version where the regular expressions were
translated into BNF rules as well; this generates more varied
identifiers and strings (e.g., using all escape sequences), but
only in their fixed embedding positions, as determined by
the cover algorithm. For this test suite, we also generate
comments in the test programs, making it the only one to
exercise these parts of the scanner.

Note that in particular the test suites from covering “short”
k-step derivations (i.e., k < 2) are very small: even cdrc has
fewer tests (79) than the grammar has rules (89), despite
the fact that it requires the application of each rule in each
context. Moreover, due to way the cover algorithm works,

Grammar-Based Testing for Little Languages

SLE ’20, November 16-17, 2020, Virtual, USA

Table 1. Results of syntactic tests. M denotes the number of tests, length their average length in tokens. Line and branch coverage are
measured by gcov; error is the average number of different semantic (for positive testsuites) resp. syntax (for negative testsuites) errors
triggered. Pass and Failures denote the number of submissions passing all tests in the suite respectively failing on at least one test. For
positive tests, front refers to the call of the error handler with a syntax error message (see Fig. 2); for negative tests, it refers to situations
where no syntactic or semantic errors (which can pre-empt syntactic errors due to the single-pass implementation) are called, crash refers to
an unspecified system crash. Note that submissions can produce different failures over the individual tests in a suite; in these cases, they are
counted towards all failure categories, and pass and front/crash failure numbers do not add up to 61. Revealing Tests denotes the average
relative number of tests causing at least one failure in the respective category; front and crash are as before, while table refers to test failures
due to calls from the symbol table module to the error handler with scope or type error messages.

Size Coverage Pass Failures Revealing Tests (%)
Testsuite M l length || line (%) l branch (%) l error (#) front l crash || front l table l crash
symbol 37 10.1 60.7 46.3 1.1 18 8 39 09 | 123 19.9
rule 46 10.8 62.9 48.6 1.1 18 11 39 1.2 15.5 20.1
cdre 79 11.8 63.9 50.3 1.1 17 12 41 1.5 19.9 20.7
steps 180 13.6 65.2 51.5 1.1 15 18 42 1.9 | 247 21.1
stepy 427 14.6 66.4 53.3 1.3 15 19 43 2.7 | 26.7 21.6
deriv 449 14.3 66.7 55.6 1.3 13 20 44 3.1 26.3 22.3
bfsy 148 12.2 64.2 50.8 1.1 16 14 41 1.6 | 23.1 20.7
bfss 4571 16.0 67.3 53.6 1.5 13 20 43 1.6 | 31.8 24.1
lexical 447 9.0 67.0 55.5 1.2 16 14 41 0.5 6.4 19.1
instrt 182 33.8 75.6 67.3 3.2 6 50 49 3.7 | 134 22.9
DLy (rule) 41874 12.1 62.1 55.1 6.6 15 44 42 90.0 5.5 4.3
DLs(rule) 43350 12.2 62.2 55.2 6.6 15 44 42 90.0 5.5 4.3
rule-mutation 9971 12.6 61.8 53.4 6.9 16 45 42 80.0 12.7 7.2
instr™ 48 14.7 56.1 45.9 6.4 24 36 34 90.0 1.4 8.4
combined 10867 12.5 74.5 67.6 7.0 0 55 46 73.6 13.0 8.3
instr 230 29.8 78.7 71.6 9.0 5 51 50 22.0 10.7 19.8
randomgymbol 37 101 60.9 474 08][170 80| 400 03] 106 | 193
randomyye 46 10.8 63.2 49.6 0.8 17.6 10.4 40.0 0.9 12.1 20.8
randomcgyc 79 | 118 64.9 52.5 11| 170 | 124 | 410 11| 162 | 212
randomstep3 180 13.6 66.2 53.7 0.8 14.0 18.0 43.5 1.6 | 21.0 21.6
randomstem 427 14.6 67.7 55.9 0.8 13.8 19.4 43.4 24 | 237 22.2
randomgeriy 449 | 143 67.7 58.0 08 || 130 202 | 4401 28| 250 230
randomygg, 148 12.2 65.0 52.8 1.1 16.0 14.2 41.0 1.4 | 20.9 21.0
randompgg, 4571 16.0 67.9 55.7 1.1 13.0 22.0 44.0 23| 312 24.4
randomsgg 7.5 86.2 47.4 34.8 0.9 16.6 9.6 41.4 43 | 295 42.4
randomsggo 72.5 69.9 68.6 56.1 1.3 11.8 20.8 46.8 56 | 283 40.9
randomsgggo 648.1 77.2 72.6 63.9 1.8 9.8 | 22.0 49.2 53 | 28.0 41.5
randomsgo00 65314 | 76.6 75.0 68.6 30| 74| 240 516 52| 277 | 412
| combined/randomsgooo [| 174103 [365 [[786 | 734 | 82] 00] 548[520 478] 185] 207]

these test suites contain mostly short programs. For exam-
ple, programa : main : chillax end, which is the shortest
possible AMPL program, already covers seven terminals and
four non-terminals for symbol, and five rules for rule.

Longer derivations achieve better system coverage. Our
experiments confirm the high-level assumption both for the
narrower k-step and the wider k-level bfs derivation schemes.
The first block of Table 1 shows an increase in the system-
wide code coverage (both at line and branch level) with an
increase in the derivation length k. For example, symbol
(i.e., stepp) has a noticeably lower line (60.7%) and branch
coverage (46.3%) than step, (66.4% and 54.8%, respectively).

The boxplots in Fig. 3 show overlaps in the distributions
but the increases are in most cases statistically significant

as pairwise paired t-tests over all test suites show.! This is
hardly surprising, as stepy and bfsi are both contained in
stepy+1 and bfsi,1, respectively. The only exceptions are be-
tween step, and deriv and between lexical and steps, deriv,
and bfss, respectively, where we cannot reject the null hy-
pothesis for line coverage. In the former case, however, branch
coverage is statistically significantly higher for deriv than

I The shape of the boxplots in Fig. 3 indicates that we can approximate the
code coverage measurements sufficiently well with a normal distribution.
We consider one test suite as baseline and the other as treatment, and
pair up the respective results over the underlying student cohort. The
null hypothesis is that both coverage metrics are drawn from the same
distribution; its rejection means that the observed mean coverage values are
statistically significantly different. We consider this at significance levels of
p < 0.05, as usual.

SLE ’20, November 16-17, 2020, Virtual, USA Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

100

8 a0 8 %0 0l]gs I R R
7T TTT15778] : [T

8

Line Coverage (%)

[®] o o (@) (®] o o [®) (®] o o (@] (®] o o
0 T

T T T T T T
» C L %)) 0 N X >\
PR\ S S N P X Ne
O < S P U P U NCAMENN O\}\(\) \

o o (@)

\e\ O© X NS f')\(‘ o Q% % (\6
) \‘\)«\ RGN @(\60 R @(\(\6@@6;«@ x<@
Figure 3. Boxplots for line coverage for syntactic test suites (excluding systematic test suites with random token instances).
Each box shows Q3/Q1 interquartile range of the line coverages, i.e. the upper end of the box shows the 75th percentile (where
the line coverage is better than the indicated value in 75% of the student compilers) while its lower end corresponds to the
25th percentile. The line across each box indicates the median and the “whiskers” extend from the 95th to the 5th percentile.
Outliers are shown as circles; the bottom outlier across all test suites reflects the coverage from the same student’s submission.

for step4, indicating that the few longer derivations explored
by deriv exercise more system behaviors rather than simply
a larger part of the system’s code base. The latter cases in-
dicate that lexical indeed exercises different aspects of the
system—specifically, its line coverage of the scanner module
is as expected widely above (by approx. 15%-points) that of
every other test suite.

Note, however, that line coverage tops out around 68%.
This falls short of the 70-80% code coverage range that is
considered to be an indication of a good test suite. Stated
more clearly: from a software engineering point of view, the
systematic syntactic tests are insufficient for testing.

Similarly to the code coverage numbers, the numbers of
submissions with detected failures in the front-end (i.e., er-
rors in the implementation of the parser) or with crashes go
up, and consequently, the number of submissions passing all
tests in the respective suites goes down from 18 for symbol
to 13 for deriv and bfs;. However, the number of semantic er-
rors exercised remains consistently low across all test suites
and is only half of that of instr*. The systematic tests mostly
exercise the scope errors (g) and (h) in Fig. 2.

Surprisingly (or perhaps not—these are student implemen-
tations after all), up to a third of the submissions fail with an
unexpected syntax error for at least one test in the test suites.
The test suites from the standard criteria (i.e, symbol, rule
and cdrc) over shorter derivations perform much worse than
those over longer derivations, not only because the former
are smaller, but also because the individual tests are much
less likely to reveal any failure: for symbol, only 0.9% of the
61 X 37 = 2257 runs of all submissions over all tests led to
an unexpected syntax error, while 3.1% of the corresponding
61 X 449 = 27389 deriv-runs did.

In summary, and as answer to RQ1a, we can conclude
that larger input space coverage through longer or wider
derivations improves line and branch coverage from 60.7% to

67.3% and from 46.3% to 55.5%, respectively, and substantially
increases the number of submissions in which syntax errors
(from 8 to 20 out of 61 submissions) and crashes (from 39 to
44) are uncovered.

Wider derivations are not better than narrower deriva-
tions. Table 1 shows that test suites based on the k-level
bfs derivations perform better than those based on the cor-
responding narrower k-step derivations, but paired t-tests
show that the difference is not statistically significant in this
case. Moreover, the size of the bfs test suites follows the ex-
pected exponential growth (e.g., bfss already contains more
than eight million tests, and we were not able to complete
its evaluation), but the larger size does not correspond to
a much better coverage of the semantic errors. Similarly,
the k-level bfs test suites find syntax errors or crashes only
in few additional submissions, and pass a couple of fewer
students entirely. This indicates that the additional tests in
the k-level bfs test suites mostly exercise the same behaviors
than those already exercised by the corresponding narrow
k-step test suites.

The instructor’s test suite outperforms systematic pos-
itive test suites. The syntactically correct instructor test
suite instr* achieves a substantially and statistically signifi-
cantly higher line (75.6% vs. 60.7%—67.3%) and branch (67.3%
vs. 46.3%—55.6%) coverage than any of the systematically
generated positive test suites.

instr* also covers the error space much better: on aver-
age, submissions exercise 3.2 different semantic errors over
this suite, achieving 2x-3x the coverage induced by the
grammar-based test suites. instrt detects syntax errors in
50 of the 61 submissions (i.e., at 2.5X-6X the ratio of the
automatically generated test suite), with 3.7% of the test runs
failing with an unexpected syntax error. Overall, it uncovers
errors and crashes in more than 90% of the student submis-
sions, letting only six of them pass.

Grammar-Based Testing for Little Languages

Summary. In our experiments, the automatically gener-
ated positive syntactic test suites perform substantially and
statistically significantly worse than the instructor’s hand-
crafted suite, even when we focus on their ability to uncover
syntax errors rather than on the achieved code coverage.
When no hand-crafted test suite is available, grammar-
based test suites can be used as a basis for testing and valida-
tion tasks. In our case, they achieve 60%—-68% line coverage,
and uncover syntax errors in 8-20 and crashes in 39-44 of
61 submissions. Test suites based on longer and more com-
plex derivations perform better, but grow quickly and come
with a higher test execution cost. The challenge is to define
a criterion that reduces these costs but still achieves good
system coverage. Our results show that deriv achieves the
highest code coverage and triggers the highest number of
failures and crashes of all grammar-based test suites, with a
moderate number of tests. It therefore has good potential as
low cost and high coverage criterion, thus answering RQ1b.

4.2 Negative Test Suites

Next, we investigate how the negative test suites (i.e., contain-
ing only syntactically invalid tests) perform. For their con-
struction we use token- and rule-mutation algorithms [27].
We apply the Damerau-Levenshtein mutations with n-grams
of length n = 2 and n = 3 to the positive rule test suite
(denoted by DL, (rule) and DLs(rule), respectively). We com-
pare these to the 48 negative tests from the instructor’s test
suite (denoted as instr™). Note that for the negative tests the
Pass column in Table 1 shows the number of submissions
that correctly reported a syntax error.

The second block of Table 1 shows that the mutation-based
negative test suites achieve higher line, branch, and error
coverage than the manually constructed negative test suite of
the instructor. instr~ passes more (24) submissions, but also
crashes fewer submissions compared to the mutation-based
test suites. Note that the number of different errors reported
on average is actually higher than the number of different
syntax error messages given in the specification. This indi-
cates that many students did not follow the instructions and
reported errors wrongly.

Despite its smaller size, instr~ contains test cases that
are targeted towards certain parts of the compiler (which
explains the high number of passing submissions), but overall
the test cases have less syntactic variation than the mutation-
based tests, which therefore achieve higher coverage and
crash more submissions.

4.3 Combined Systematic Test Suites

Next, we merge the tests from deriv (for deep syntactic cov-
erage), lexical (to further exercise lexical analysis), and rule-
mutation (for negative test cases) and evaluate these as a
single combined test suite (third block of Table 1). This com-
bination achieves a statistically significant increase in code

SLE ’20, November 16-17, 2020, Virtual, USA

coverage over the individual test suites, and finds errors in all
submissions, but it still fails to match instr on code coverage.

4.4 Random Test Suite Generation

Next, we investigate the performance of random positive test
suites. We are interested in the question whether systematic
or randomized grammar-based methods are better.

RQ2: Do purely syntactic test suites systematically con-
structed by the cover algorithm achieve better system
coverage and find more errors than purely syntactic
random test suites of similar size?

For this question, we investigate two different methods of
constructing random programs. First, we generate the sys-
tematic test suites, as before, but use random instances for
the structured tokens id, num, and string, rather than their
minimal yield instances. This can be seen as a randomized
version of skeletal program enumeration [31]. We denote
these test suites by randomgympol to randomgeriy in Table 1.
Second, we generate test suites using random derivations,
but to allow for a fair comparison with the systematically
constructed test suites, we limit their size to a fixed “to-
ken budget” (i.e., total length). More specifically, we first
generate a pool of 100000 random =>'!-derivations; we do
not eliminate duplicates, to boost the number of smaller
tests. We then sample four test suites with token budgets
N =500, 5000, 50000, 500000 such that the random test suites
are roughly the size of rule, twice that of steps, bfss, and 10
times that of bfss, respectively. We use random instances for
the structured tokens, which means that the test suites can
contain structurally equivalent copies, with different names
only. We denote these test suites by randomy in Table 1.
Note that the average file sizes are much larger here than in
the systematic and instructor’s test suites. We repeat both
random constructions five times and record the averages in
Table 1.

For randomized skeletal program enumerations, code cov-
erages are statistically indistinguishable from those of the
systematic versions using fixed minimal token yields. Seman-
tic error coverages actually go down (because the random
names fail to trigger “multiple declaration” errors), and the
number of submissions with failures remains largely un-
changed.

The results of the random derivations are much better.
The resulting test suites (excluding randomsg) achieve a
statistically significantly higher code coverage in comparison
to test suites of the same size constructed following any of the
systematic criteria, cover more semantic errors, and trigger
more failures and crashes. In particular, they break through
the line coverage barrier of the systematic test suites, and
randomsggogo also achieves a semantic error coverage almost
matching that of instr*, although it uncovers syntax errors
in fewer submissions.

SLE ’20, November 16-17, 2020, Virtual, USA

We can therefore state in answer to RQ2 that random
grammar-based test suites perform better than systematically
constructed positive test suites, and achieve code coverage
on par with combined positive and negative test suites, but
trigger more crashes than the combination.

4.5 Combined Systematic/Random Test Suites

Finally, we merge the combined syntactic tests with the ran-
dom tests in randomsgggoo. This combination performs con-
sistently well and on par with the instructor’s test suite: it
achieves about the same line coverage, better branch cov-
erage, covers almost as many errors, and triggers failures
and crashes in about the same number of submissions, even-
tually finding errors in every single submission. Both ap-
proaches (i.e., systematic and random test suite generation)
complement each other well: the combined code coverage
is noticeably higher than that of either individual test suite,
the random tests trigger many crashes, while the systematic
tests ensure high error coverage and uncover syntax errors
in every single submission.

We can therefore give a positive answer to RQ1: we can
indeed construct grammar-based test suites that have the
same performance as a hand-crafted test suite. Their only
shortcoming—which is ultimately a limitation of the purely
syntactical approach to test suite generation— is the lack of
a semantic oracle, which we address in the following section.

5 Testing Contextual Constraints

The results so far show the main limitation of syntactic test
suites: while we can achieve adequate code coverage through
a combination of systematic and random test suites, the lack
of a more precise semantic oracle means that we can use these
test suites only for syntax and crash testing. Any functional
testing (with concomitant better error detection capabilities)
requires tests that either conform to the contextual con-
straints of the language (principally its scoping and typing
rules), or break them in a well-defined way. Our last two
questions address this issue:

RQ3: How do we encode contextual constraints into the
grammar and integrate them with test suite generation
to create semantic test suites?

RQ4: How do we generate tests with specific failure modes?

In order to construct such tests, we need to integrate a
semantic oracle with—but not necessarily into—the test suite
construction. In the following, we describe and evaluate
such an integration via a simple generate-and-test schema
with a “dumb” generator and a lightweight tester. We first
randomly generate syntactically valid program skeletons (see
Section 4.4), and then test whether we can complete them
into programs that satisfy the required properties (or break
them in a controlled way) by choosing appropriate values for
the identifier tokens; skeletons that fail this property check
are discarded.

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

Our key idea is to use a lightweight extension of CFGs to
capture the required contextual constraints, rather than rely-
ing on an attribute grammar framework (such as RAGs [12]
or Silver [28]) or even a full-fledged DSL such as NaBL [17].
More specifically, we encode scoping and typing information
with “semantic mark-up tokens” in the rules, for example

fdef — id_dcl: enter
takes vdecl (; vdecl)*
returns (type | nothing)
body leave

fc.z;:tor — id_ref ([simple] | Cexpr (, expr)*))?| ...

Here, mark-up tokens such as enter or leave are typeset in
sans serif; note that we use the notation id_dcl (resp. id_ref)
to add the semantic mark-up dcl (resp. ref) to the token id.

The mark-up tokens are interpreted by a small generic
core engine when the token streams for the generated tests
are rendered. Some tokens are “pretty-printed” purely for
their side-effect in the core engine and actually rendered as
empty strings (e.g., enter creates and enters a new scope in
the symbol table but leaves no trace in the actual program)
while others have a side-effect but also return a textual rep-
resentation (e.g., id_dcl adds a declaration for a fresh name
to the symbol table’s current scope and returns the name).

The interpretation of a mark-up token can also fail (e.g.,
id_ref trying to look up an identifier in an empty symbol
table). In this case, it is impossible to complete the skeleton
into a valid program (under the interpretation of the con-
textual constraints given by the mark-up tokens), and the
skeleton is discarded as a test.

Finally, the integration requires some minimal glue code
that implements the contextual constraints using the core
engine’s API, and a mediator between the grammar and this
glue code that maps the mark-up tokens to the corresponding
functionality. For example, the mediator mapping

enter ~» scope.enter(uni, single, transparent)

maps the mark-up token enter to the API-function enter,
with arguments capturing AMPL’s scoping model; see below
for details.

This separation of concerns between the semantic oracle
and the test suite construction has several advantages. First,
it allows us to reuse the grammar-based testing framework
without any changes. We can therefore use this to drive explo-
ration of the semantic space, e.g., to generate all skeletons
that cover all minimal paths between id_decl and id_ref.
However, we leave such specialized coverage policies for
future work, and simply use random program skeletons for
our evaluation. Second, we can reuse semantic core function-
alities such as symbol tables. Third, we can easily change
the underlying contextual constraints by deliberately over-
writing some of the mappings in the mediator. We use this
to implement concise error models that are guaranteed to
produce tests that break specific contextual properties of

Grammar-Based Testing for Little Languages

/| Declarations
program — initialize enter
programid : funcdef™ main : body
leave cleanup
fdef — id_dcl : enter
takes vdecl (; vdecl)*
returns (type | nothing)

body leave
varseq — id_dcl (, id_dcl)* : type
/| References

assign — letid_ref ([simple1)? = (expr | array simple)
call — id_ref Cexpr (, expr)*)

input — input id_ref ([simple1)?

factor — id_ref ([simple] | Cexpr (., expr)*))? | ...
/] Mappings

initialize ~ scope.initialize()

cleanup ~» scope.cleanup()

enter ~» scope.enter(uni, single, transparent)
leave ~» scope.leave()

id_dcl ~» scope.declare(uni)

id_ref ~» scope.lookup(uni,visible)

Figure 4. AMPL rules with scoping tokens and mappings.

the language. For example, by changing the mapping from
id_ref ~ scope.lookup(uni,visible), which returns an
arbitrary identifier that is visible at the current location, to
id_ref ~» scope.fresh(), which generates a fresh identi-
fier, we generate AMPL programs for which compilers must
report the error “the identifier <id> is unknown”.

5.1 Testing Scoping Rules

We now illustrate our approach in more detail and use se-
mantic mark-up tokens to specify AMPL’s scoping rules. We
also demonstrate the use of error models. Figure 4 shows
all rules that require scoping mark-up tokens, split into the
rules where id’s are declared and where they are referenced,
and the mediator mappings.

As indicated in Section 3, AMPL’s scoping model is very
simple. It has a single universal namespace and at most two
nested scopes, since functions can only be declared at the
top-level and declarations cannot shadow each other. Hence,
there are only two rules where we need to mark-up tokens to
handle scoping; see Fig. 4. At the program rule, we enter and
leave the global scope at start resp. end of the program; the
mapping for enter calls the scope.enter API-function with
arguments that specify scopes which only allow a single
declaration for each name, and have a transparent bound-
ary with any nested scopes and do not allow overwriting of
any declarations. At the fdef rule, we enter the local scope
after the function name and leave it after the function body;
this ensures that the function’s name is still added (via the
mark-up token) to the global scope.

Variables and parameters are both declared at the varseq
rule, via the id_dcl mark-up token. Note that the enter and

SLE ’20, November 16-17, 2020, Virtual, USA

leave mark-up tokens ensure that the declarations are en-
tered into the correct scope. Since we are generating test
cases, the actual name is not fixed at this point; the map-
ping for id_dcl simply uses the scope.fresh() API func-
tion to generate an unused random identifier. Note also that
program name is not adorned with a mark-up token, be-
cause it is not actually entered into the symbol table; in
fact, we uncovered this inconsistency in the AMPL specifica-
tion through our testing. At references, we use the function
scope.lookup(uni, visible) mapped from the mark-up to-
ken id_ref to simply pick a random name that is visible in
the current scope.

The simplicity of the mediator mappings is actually a
virtue. Since AMPL is a little language with a simple scoping
model, we can map its definition directly into API-calls. More
complicated languages could require more effort.

Error Models. The scoping mark-up tokens described above
guarantee that any syntactic skeleton which is successfully
completed into a test case is correct with respect to AMPL’s
scoping model (but not necessarily its typing rules; see Sec-
tion 5.2). Hence, any student submission that produces any
scope error (in Fig. 2, messages (g) or (h)) must contain an
error. We can therefore use these tests to identify both types
of scoping errors. However, obviously, this does not catch
all errors, e.g., it would not catch errors in a compiler not
implementing any symbol table at all.

We can improve our testing with tests that are syntac-
tically correct but contain a single, well-defined violation
of a contextual rule. We can construct such negative con-
textual test suites easily within our framework, simply by
overwriting the mappings for individual mark-up tokens.
For example, the following four mappings model different
possible errors in the symbol table:

scope.lookup(uni, current)
scope.lookup(uni, outer)
scope.fresh()
scope.lookup(uni, stale)

id_dcl ~o,
id dcl ~o,
id_ref ~o,
id_ref ~o,

The first error model tests the handling of multiple defini-
tions (Fig. 2(g)), by returning an identifier that is already de-
clared in the current scope rather than declaring a fresh one
(as the base mapping does; see Fig. 4). Note, however, that this
would fail on the first id_dcl mark-up token that it encoun-
ters (since the current scope is still empty), and never produce
a test case. We therefore use a generic error function to wrap
this into a try/catch-construction that falls back to the base
mapping if the mapping in the error model fails; we denote
this by ~»..2 Hence, by using the base mapping for the first
id_dcl mark-up token and the error model for the second, the
skeleton programid: main: id_dcl, id_dcl: boolean;

chillax end can be successfully completed into the test
2The actual implementation also maintains error counts and locations, and

provides more flexibility, allowing the specification of additional guards
and a separate base mapping.

SLE ’20, November 16-17, 2020, Virtual, USA

case programa : main: x , x : boolean; chillax end that
contains the expected duplicate variable declaration for x.

The second error model also tests for duplicate declara-
tions, but it looks for an existing declaration in an outer
(rather than the current) scope. Given AMPL’s scoping
rules, this produces test cases where a parameter or local
variable shadows a function declaration.

Similarly, we can generate test cases with references to
undeclared variables (Fig. 2(h)), either by returning a fresh
and therefore guaranteed undeclared name, or by looking
up a stale name that has gone out of scope.

We emphasize that our goal here is only to demonstrate
how an adequate symbol table implementation can be inte-
grated into grammar-based test suite generation to enforce
and to break the scoping rules for a little language, not to
introduce a new general scoping modeling language.

5.2 Testing Typing Rules

We now extend our approach from handling scopes to han-
dling types. Our overall approach remains the same: we
generate a program skeleton that contains semantic mark-
up tokens, and then interpret it from left to right, choosing
names that ensure that the syntactically correct skeleton also
obeys the contextual constraints.

However, the structure of the interpretation changes, and
we now execute a type checker over the program. We use ad-
ditional mark-up tokens or type annotations ::itype to express
in the rules that a grammar symbol, or more precisely its
yield, must have the given type under the type information
stored in the symbol table. Types are either AMPL’s basic
scalar types (rendered as bool and int), nothing, or generic
scalar and array types, with any representing any type and
something representing any type but nothing. A compatibil-
ity relation specified as part of the type system allows us to
match the types, for example bool against any or something.

We need to refactor the rules slightly if the syntactic struc-
ture can interfere with the contextual constraints. For ex-
ample, we need to split the original “untyped” rule term —
factor (mulop factor)* into three different variants with the
right type annotations:

term:bool — factor:bool (and factor:bool)*
term:int - — factorzint ((/ | *) factor:int)*
term — factor

Note that this destroys the LL(1)-property of the grammar,
but this does not matter since we are generating programs,
not parsing them. The first variant says that we can generate
a term of type bool if we generate a list of at least two factors
also of type bool that are separated by and -tokens. The last
variant remains untyped because it is generic: the type of
the term is the same as the type of the factor.

The core engine maintains the type annotations on a stack
so that the top of the stack tracks the currently expected

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

type.® The annotated rules as shown above are therefore
pre-processed so that the right mark-up tokens are produced
in the right order: a type annotation :type on a rule’s head
is translated into a mark-up token pop(type) that is inserted
before the rule body, while the same annotation in a rule’s
body is translated into a mark-up token push(type) that is
inserted before the annotated symbol. As an example, from
the annotated rules

loop — while expr:bool : stmts end
factor::bool — not factor::bool

and the corresponding generic rules for expr, simple, term,
and factor (see Fig. 5 in Appendix A.1 for the full AMPL
grammar with the type annotations and mark-up tokens) we
produce the fragment

while push(bool) pop(bool) not push(bool) id_ref(var) :
chillax end

When the core engine interprets a push(type) mark-up to-
ken, it simply pushes this on the stack. When it interprets a
pop(type) mark-up token, it checks that the expected type
matches the top of stack; if the types match (under the spec-
ified compatibility relation), the top is popped off the stack,
otherwise the skeleton cannot be made type-correct and is
discarded. Hence, the push(bool) and pop(bool) after the
while cancel out, as expected, and the second push(bool)
leaves a bool on top of the stack when id_ref(var) mark-up
token is interpreted.

At this point, the interpretation of the scoping and the
typing mark-up tokens intersect: id_ref(var) is mapped to a
lookup-call for a currently visible variable whose declared
type matches the type on the top of the stack; if this succeeds,
the type is “consumed” and popped off the stack. This can
be formulated concisely in the mediator mapping

id_ref(var)~»scope.lookup(uni, visible, var, type.pop())

However, this requires the corresponding type informa-
tion for an identifier to be added to the symbol table. This
happens through the rule

varseq — mark id_dcl(var) (, id_dcl(var))*: type upd_vars

Here, mark first pushes a marker on the stack; each id_dcl(var)
then uses scope.declare to create and declare a variable
with an incomplete symbol table entry (i.e., without asso-
ciated type information), and pushes a var marker on type
stack. upd_vars pops off the correct type left there by the
type-rule and unwinds the stack until it hits the marker. On
the way it updates the type information in all incomplete
symbol table entries it encounters, and replaces the var mark-
ers by the type, to leave on the stack the right information
for upd_fun.

3In fact, the symbol table and type stack APIs are working on the same
underlying stack; this makes the integration between scoping and typing
easier, e.g., in the varseq- or fdef-rules, see below.

Grammar-Based Testing for Little Languages

SLE ’20, November 16-17, 2020, Virtual, USA

Table 2. Results of semantic tests. The interpretations of the columns Size and Failures remain as in Table 1, but Failures now includes
semantic errors, due to the stronger semantic oracle. Coverage lists the different error messages (Fig. 2) triggered by tests in the corresponding

test suite. The different error models are explained in Appendix A.

Size Coverage Failures
Error Model M length || line (%) | branch (%) errors front | table | crash
None 10780 40.2 72.0 61.0 *(x) 18 59 45
Redeclaration in scope 9903 41.8 64.3 52.3 (2) 15 43 41
Undeclared identifier 432 425 52.8 40.5 (h) 7 45 43
Reference out of scope 668 56.0 51.5 38.9 (h) 6 55 43
Variable instead of function 54 69.0 51.9 38.4 @),3) 13 45 39
Function instead of variable 917 65.6 68.3 55.3 | (k)-(m),(p)-(t),(w),(x) 20 61 51
Scalar in array assign 88 59.6 64.2 53.2 @ 9 50 39
Not an array 98 61.4 63.8 48.4 D),(x) 9 53 36
Array instead of scalar 254 64.9 61.2 47.1 (m),(p),(q),(s),(t) 12 61 43
Array instead of scalar (generic) 901 48.6 65.5 52.0 (n) 10 53 44
Boolean instead of integer 194 62.9 68.6 55.9 (p),(q),(u),(v) 12 49 41
Mismatched types in assignment 26 72.8 57.5 43.7 () 7 56 36
Integer instead of boolean 339 61.2 67.4 54.6 (s)-(u),(w) 13 50 41
Mismatch types in function parameters 13 74.9 49.1 36.1 (%) 5 47 33
Too few arguments 68 69.3 57.0 43.5 (y) 16 49 38
Too many arguments 12 494 425 30.5 (z) 9 50 35
Combined 24659 43.6 75.0 66.1 (2)-(n),(p)-(z) 22 59 51

In general, the type stack allows us to store and flexibly
manipulate the contextual dependencies while we traverse
the skeleton in single left-to-right pass, e.g., to handle the
argument alignment between function declarations and func-
tion and procedure calls:

factor — id_ref(fun) (expr (, expr)*) unmark

Here, id_ref(fun) looks up a visible function that matches
the target type on top of t]l?le stack, and pushes the marker
and then the argument types (in reverse order) on the stack.
Each expr then finds its own corresponding target type on
top of the stack; if it encounters the marker, the skeleton has
too few actual arguments to match the formal parameters,
and is discarded. Likewise, if unmark does not see the marker,
the call has too many arguments for it to be valid and the
skeleton is discarded as well.

All successfully completed skeletons satisfy the contextual
constraints—now both scoping and typing.

Error Models. As with the scoping model, we can now eas-
ily inject a wide variety of errors into the generated tests,
simply by overwriting the mappings for individual mark-up
tokens. For example, we can trigger type errors at control
flow predicates or boolean operators by pushing an int rather
than the required bool on the type stack, using a simple map-
ping push(bool) ~», push(int). Similarly, we can use arrays
where scalars are required (push(scalar) ~», push(array)),
or vice versa, or test that functions are not called as pro-
cedures (push(nothing) ~». push(something)). Note that
these error models are in some sense cross-cutting concerns,
since for example push(bool) ~», push(int) can apply at
any syntactic position that requires a bool value. In order to
target errors associated with specific syntactic positions, e.g.,
“incompatible types for not” (see Fig. 2(w)), we would need

to refine the mark-up tokens, or perhaps even use a different
style of error models where we overwrite entire grammar
rules; however, we leave this for future work.

Overall, we formulated in about four hours 15 different
error models for scoping and typing errors. Most of them
are equally straightforward as the examples above, since we
only changed the arguments of the push mark-up tokens to a
different, incompatible value. This did not require any deeper
insights into the language specification, since AMPL’s type
system is simple. However, injecting errors to trigger the
“incompatible types for parameters” and “too few / many
arguments” messages Fig. 2(x), (y), and (z) required some
more involved stack manipulations. An informal description
of all error models, including examples of corresponding
tests is given in Appendix A.3.

The entire implementation, including the generic symbol
table, the AMPL-specific glue code, and all mediators (both
for correct code and for error models), comprises less than
300 lines of code, not counting comments and empty lines.

Experimental Results. We derived a test suite with type-
correct programs, as well as one for each error model, from
100 000 skeletons randomly generated at depth 11 using rule
probabilities to bias shorter declaration and argument lists,
and then using the encoding of the contextual constraints
resp. the error models to complete them into programs. This
took about 90 seconds per test suite on a standard laptop,
roughly evenly split between the random skeleton construc-
tion and the completion; we observed only little variation
between the different error models.

Table 2 shows the characteristics of the generated test
suites. The number of skeletons that could be typed accord-
ing the semantics of AMPL varies between the error models,

SLE ’20, November 16-17, 2020, Virtual, USA

but we do not consider this to be a limiting factor as test
suite generation is inexpensive. While the code coverage of
the semantically correct tests (i.e., no error model) is slightly
lower than the code coverage of the best syntactic test suites
(see Table 1), the code coverage of the test suites under the
different error models drops substantially. This is hardly sur-
prising, since they are substantially smaller. However, what
is more important is that with our stronger semantic oracle,
the test suites find incorrect implementations of the contex-
tual constraints in all of the student compilers. Additionally,
we find three bugs in the instructor implementation (these
are shown in Appendix A.2), including an erroneous call to
error function (x) when parsing a type correct program.

6 Threats to Validity

Our observations are based on a single experiment. However,
our cohort size is large enough to allow statistically valid
conclusions. We believe that the experimental set-up reflects
a common teaching situation, and that our observations can
be generalized to similar educational contexts. We also be-
lieve that they could also be generalized to compilers for
domain-specific languages since they are often of a similar
size and complexity as AMPL. However, all subject programs
are implemented as one-pass compilers, so we do not face
the usual “phase bottleneck” where code in one phase is only
exercised if the test complies with all constraints checked
in prior phases. Overall coverage values may thus be sub-
stantially lower for modern multi-pass compilers, although
coverage over the syntactic and semantic analyses phases
should remain similar. The subject programs all used given
scaffolding code and architectural skeletons, which could
systematically skew results in either direction. Finally, note
that the subject programs were implemented by students,
which may make it easy to find errors in these systems. This
may not be the case in production compilers but code cover-
age numbers should generalize, all other things remaining
equal.

Another threat to validity is the lack of comparison to
existing tools in our discussion of Section 4. However, we
did fuzz the instructor’s compiler using AFL [30], both us-
ing its default blind mode, and with a dictionary of tokens
constructed from the instructor’s test suites. AFL plateaus
at 73.6% line coverage, and provides no stronger oracle than
our syntactic test suites.

We mitigated against the usual internal validity threats
of human error, human bias and human performance by
automating experiments and using well-established tools for
code coverage and statistical evaluation.

7 Related Work

Grammar-Based Test Suite Construction. Purdom’s sem-
inal paper [26] proposed an algorithm that systematically
constructs a minimal number of sentences but ensures that

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

all grammar rules are applied. However, we do not use Pur-
dom’s algorithm in our evaluation, because of the complexity
of the individual test cases. Context-dependent rule cover-
age [18] is considered the standard grammar coverage cri-
terion. We use other coverage criteria such as symbol, rule,
their extensions to k-step and k-level simultaneous deriva-
tions and a fix-point derivable pair coverage (Definition 2.1).

Grammar-based test generation has focused almost exclu-
sively on generation of positive test suites until recent work
that proposed two mutation-based algorithms [27] that guar-
antee programs with single well-defined errors. We also use
extensions to token mutation that look at n-grams instead
of poisoned pairs.

Random Program Generation. Random program genera-
tion for testing purposes goes back at least to Hanford [10]’s
work in 1970. More recent random generation approaches
[3, 13, 15, 19, 22, 23, 25] typically use a large number of con-
trol parameters (e.g., rule probabilities, traversal orders, sym-
bol and rule counts, length, depth, and balance restrictions,
rule guards, and many others) to ensure that the derivation
process terminates, and that the generated programs have
certain characteristics. Similar techniques are employed by
grammar-based fuzzers such as langfuzz [14].

QuickCheck-style [5], property-based testing techniques
and tools have also been used to generate programs, either di-
rectly from using types as generators [24], from grammars or
from other kinds of rules [1, 20]. One of the main challenges
has been to generate programs/terms that are not completely
random but satisfy certain (semantic) preconditions, e.g., are
type or semantically correct. For example, Fetscher et al.
[8] present a generic method for randomly generating well-
typed expressions starting from a specification of a typing
judgment in PLT Redex and using a specialized solver that
employs randomness to find many different valid derivations
of the judgment form. They then use these random terms to
falsify semantic model conjectures.

In the area of random testing of compilers, of special note
is Csmith [29], a well-engineered, highly effective tool for
generating C programs that avoid undefined or unspecified
behavior by construction.

More recent works propose methods specifically aiming
to find test programs which result in difficult-to-find mis-
compilations [21], or that generate test programs which are
more likely to be bug-revealing and diverse [4].

Generation of Semantically (In)Valid Programs. Kifetew
et al. [16] use stochastic context-free grammars with seman-
tic annotations on grammar rules similar to our type an-
notations to ensure that the generated sentences respect
the semantic constraints of the language. They combine the
stochastic grammar with genetic programming (using code
coverage as the fitness function) in order to generate test
suites. However, no investigation is made into the generation
of semantically incorrect programs.

Grammar-Based Testing for Little Languages

Dewey et al. [6] depart from using stochastic context-free
grammars as generators and instead express the grammar as
predicates in a constraint logic programming system. They
then use that method to test the type checker of the Rust
programming language [7].

8 Summary and Lessons Learned

Little languages still need large test suites for proper testing.
Here we reported on our experience in using grammar-based
test suite construction methods to test simple compilers writ-
ten by a cohort of 61 undergraduate students.

We first focused on purely syntactic test suites where we
only know whether a test is syntactically valid or not. We
compared different systematic and random test suite con-
struction methods against each other and against the course
instructor’s hand-crafted evaluation and marking suite. The
main lessons we learned from this experiment are: (i) Sys-
tematic test suites achieve a code coverage below 68%, which
is typically considered to be insufficient for testing. They
also all fall far behind the instructor’s test suite in the num-
ber of detected failures and crashes, even in the student’s
implementation of the syntax, and cover fewer semantic
errors. (ii) Random test suites of the same size outperform
systematic test suites for all but the smallest sizes. Larger
random test suites push code coverage up to 75%, and trigger
more crashes but fewer non-crashing errors than the instruc-
tor’s test suite. (iii) A combination of different positive and
negative systematic and random test suites performs in all
aspects as well as or better than the instructor’s test suite,
and triggers failures and crashes in every single student
submission.

We then addressed the lack of a more precise semantic
oracle that limit syntactic test suites to syntax and crash
testing. We developed a light-weight extension of the basic
grammar-based testing framework where we encode scoping
and typing information as “semantic mark-up tokens” in the
grammar rules. These mark-up tokens are interpreted by
a small generic core engine when the tests are rendered,
and tests that cannot be completed into a valid program by
choosing appropriate identifiers are discarded. This enables
the generation of tests that either conform to the contextual
constraints of the language, or break them in a well-defined
way, and allows us to use the test suites for functional testing.
The main lessons we learned here are: (i) The separation
of concerns between the semantic oracle and the test suite
simplified the both implementation of the core engine and
the formulation of target-specific glue code. (ii) Most mark-
up is straightforward to add: we only needed to refactor
few rules (mostly in the expression syntax) to separate out
different mark-ups for shared syntax. (iii) We can concisely
formulate very targeted error models to test different aspects
of the contextual constraints. The effort for this is also low:
we wrote in about four hours 15 different error models for

SLE ’20, November 16-17, 2020, Virtual, USA

scoping and typing errors that trigger almost all semantic
errors specified in the AMPL documentation. This approach
allowed us to find errors even in the instructor’s reference
implementation.

We are currently investigating how we can extend our
approach to more complex scoping and typing models used
in modern programming languages, e.g., Rust. We are also in-
terested in more advanced methods to develop error models,
e.g., by deriving them automatically from the scope specifi-
cations. Here, the use of a higher-level name-binding DSL
such as NaBL may be attractive.

We currently do not check for the correct name resolution:
if there are multiple declarations of a name in multiple en-
closing outer scopes, how do we test that the implementation
picks the right one? This may require the generation of tests
with run-time oracles.

Acknowledgments

This work is funded in part by the NRF under Grant 113364
and by a collaboration grant from SASUF (the South Africa -
Sweden Univerity Forum). The support of the DSI-NRF Cen-
tre of Excellence in Mathematical and Statistical Sciences
(CoE-MaSS) towards this research is hereby acknowledged.
Opinions expressed and conclusions arrived at, are those of
the author and are not necessarily to be attributed to the CoE.
The third author acknowledges the support of his research
from grant #621-2017-04812 by the Swedish Research Coun-
cil, and by the Swedish Foundation for Strategic Research
through the aSSIsT project.

References

[1] Bernhard K. Aichernig and Richard Schumi. 2019. Property-based
testing of web services by deriving properties from business-rule mod-
els. Software and Systems Modeling 18, 2 (2019), 889-911. https:
//doi.org/10.1007/5s10270-017-0647-0

[2] Jon Louis Bentley. 1986. Little Languages. Commun. ACM 29, 8 (1986),
711-721. https://doi.org/10.1145/6424.315691

[3] David L. Bird and Carlos Urias Munoz. 1983. Automatic Generation of
Random Self-Checking Test Cases. IBM Syst. J. 22, 3 (1983), 229-245.
https://doi.org/10.1147/sj.223.0229

[4] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu

Zhang, and Lu Zhang. 2019. History-Guided Configuration Diver-

sification for Compiler Test-Program Generation. In 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2019).

IEEE, 305-316. https://doi.org/10.1109/ASE.2019.00037

Koen Claessen and John Hughes. 2000. QuickCheck: a Lightweight

Tool for Random Testing of Haskell Programs. In Proceedings of the 5th

ACM SIGPLAN International Conference on Functional Programming

(ICFP 2000). ACM, New York, NY, USA, 268-279. https://doi.org/10.

1145/1988042.1988046

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language fuzzing

using constraint logic programming. In ACM/IEEE International Con-

ference on Automated Software Engineering (ASE 2014), Ivica Crnkovic,

Marsha Chechik, and Paul Griinbacher (Eds.). ACM, New York, NY,

USA, 725-730. https://doi.org/10.1145/2642937.2642963

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust

Typechecker Using CLP (T). In 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE 2015), Myra B. Cohen, Lars

[5

—

[6

—

[7

—

https://doi.org/10.1007/s10270-017-0647-0
https://doi.org/10.1007/s10270-017-0647-0
https://doi.org/10.1145/6424.315691
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1109/ASE.2019.00037
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/2642937.2642963

SLE

[10

[t

(11]

(12]

(13]

(15]

(16]

(17

—

(18]

[19]

[20]

[21]

[22]

’20, November 16-17, 2020, Virtual, USA

Grunske, and Michael Whalen (Eds.). IEEE Computer Society, 482-493.
https://doi.org/10.1109/ASE.2015.65

Burke Fetscher, Koen Claessen, Michal H. Palka, John Hughes, and
Robert Bruce Findler. 2015. Making Random Judgments: Automatically
Generating Well-Typed Terms from the Definition of a Type-System.
In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Proceedings (LNCS, Vol. 9032), Jan Vitek (Ed.).
Springer, 383-405. https://doi.org/10.1007/978-3-662-46669-8_16
Bernd Fischer, Ralf Lammel, and Vadim Zaytsev. 2011. Comparison
of Context-Free Grammars Based on Parsing Generated Test Data.
In Software Language Engineering - 4th International Conference, (SLE
2011), Revised Selected Papers (LNCS, Vol. 6940), Anthony M. Sloane and
Uwe Afimann (Eds.). Springer, 324-343. https://doi.org/10.1007/978-
3-642-28830-2_18

Kenneth V. Hanford. 1970. Automatic Generation of Test Cases. IBM
Syst. 3.9, 4 (1970), 242-257. https://doi.org/10.1147/sj.94.0242
Nikolas Havrikov and Andreas Zeller. 2019. Systematically Cover-
ing Input Structure. In 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2019). IEEE, 189-199. https:
//doi.org/10.1109/ASE.2019.00027

Gorel Hedin. 2000. Reference Attributed Grammars. Informatica
(Slovenia) 24, 3 (2000).

Daniel Hoffman, David Ly-Gagnon, Paul A. Strooper, and Hong-Yi
Wang. 2011. Grammar-based test generation with YouGen. Sofiw.
Pract. Exp. 41, 4 (2011), 427-447. https://doi.org/10.1002/spe.1017
Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the 21th USENIX Security Sympo-
sium. 445-458. https://www.usenix.org/conference/usenixsecurity 12/
technical-sessions/presentation/holler

William Homer and Richard Schooler. 1989. Independent Testing of
Compiler Phases Using a Test Case Generator. Softw. Pract. Exp. 19, 1
(1989), 53-62. https://doi.org/10.1002/spe.4380190106

Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. 2017.
Generating valid grammar-based test inputs by means of genetic pro-
gramming and annotated grammars. Empirical Software Engineering
22,2 (2017), 928-961. https://doi.org/10.1007/s10664-015-9422-4
Gabriél D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco
Visser. 2012. Declarative Name Binding and Scope Rules. In Software
Language Engineering, 5th International Conference, SLE 2012, Revised
Selected Papers (LNCS, Vol. 7745), Krzysztof Czarnecki and Gorel Hedin
(Eds.). Springer, 311-331. https://doi.org/10.1007/978-3-642-36089-
318

Ralf Lammel. 2001. Grammar Testing. In Fundamental Approaches to
Software Engineering, 4th International Conference, FASE 2001, Proceed-
ings (LNCS, Vol. 2029), Heinrich HufSmann (Ed.). Springer, 201-216.
https://doi.org/10.1007/3-540-45314-8_15

Ralf Lammel and Wolfram Schulte. 2006. Controllable Combinatorial
Coverage in Grammar-Based Testing. In Testing of Communicating Sys-
tems, 18th IFIP TC6/WG6.1 International Conference (TestCom 2006), Pro-
ceedings (LNCS, Vol. 3964), M. Umit Uyar, Ali Y. Duale, and Mariusz A.
Fecko (Eds.). Springer, 19-38. https://doi.org/10.1007/11754008_2
Leonidas Lampropoulos and Konstantinos Sagonas. 2012. Automatic
WSDL-guided Test Case Generation for PropEr Testing of Web Ser-
vices. In 8th International Workshop on Automated Specification and
Verification of Web Systems. 3-16. https://doi.org/10.4204/EPTCS.98.3
Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler val-
idation via equivalence modulo inputs. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI
’14), Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216-226.
https://doi.org/10.1145/2594291.2594334

Peter M. Maurer. 1990. Generating Test Data with Enhanced Context-
Free Grammars. IEEE Softw. 7, 4 (1990), 50-55. https://doi.org/10.1109/
52.56422

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

Peter M. Maurer. 1992. The Design and Implementation of a Grammar-
based Data Generator. Softw. Pract. Exp. 22, 3 (1992), 223-244. https:
//doi.org/10.1002/spe.4380220303

Manolis Papadakis and Konstantinos Sagonas. 2011. A PropEr Integra-
tion of Types and Function Specifications with Property-based Testing.
In Proceedings of the 10th ACM SIGPLAN Workshop on Erlang. ACM,
New York, NY, USA, 39-50. https://doi.org/10.1145/2034654.2034663
A.J. Payne. 1978. A Formalised Technique for Expressing Compiler
Exercisers. SIGPLAN Not. 13, 1 (Jan. 1978), 59-69. https://doi.org/10.
1145/953428.953435

Paul Purdom. 1972. A Sentence Generator for Testing Parsers. BIT
Numerical Mathematics 12 (Sept. 1972), 366-375. Issue 3. https://doi.
org/10.1007/BF01932308

Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Break-
ing parsers: mutation-based generation of programs with guaran-
teed syntax errors. In Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering (SLE 2019), Oscar
Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira (Eds.). ACM, 83-87.
https://doi.org/10.1145/3357766.3359542

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: An extensible attribute grammar system. Sci. Comput. Program.
75, 1-2 (2010), 39-54. https://doi.org/10.1016/j.scic0.2009.07.004
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2011), Mary W. Hall and David A. Padua (Eds.). ACM, New
York, NY, USA, 283-294. https://doi.org/10.1145/1993498.1993532
Michat Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.
cx/afl/

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal
Program Enumeration for Rigorous Compiler Testing. In Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2017), Albert Cohen and Mar-
tin T. Vechev (Eds.). ACM, New York, NY, USA, 347-361. https:
//doi.org/10.1145/3062341.3062379

Appendix

A.1 Typed AMPL Grammar

Figure 5 shows the full AMPL grammar with the type anno-
tation mark-up tokens.

A.2 Bugs in Instructor Compiler

Bug #1: Unexpected Failure. The following type correct
program produces an unexpected error message in the in-
structor compiler. The test was generated under the error
model None.

program a:

n:

takes e, 04 : boolean ;
j, z : integer array

returns nothing
b50, gs81, k : integer array;
x5w1 boolean;
d, g44, a : boolean array;
pop;
do n(o4 and x5wl or x5wl, o4, gs81, b50)

end

main

=>

chillax end
incompatible types (integer array and boolean)
for parameter 3 of 'n'

https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1007/978-3-662-46669-8_16
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1147/sj.94.0242
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1002/spe.1017
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1002/spe.4380190106
https://doi.org/10.1007/s10664-015-9422-4
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1007/11754008_2
https://doi.org/10.4204/EPTCS.98.3
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1109/52.56422
https://doi.org/10.1109/52.56422
https://doi.org/10.1002/spe.4380220303
https://doi.org/10.1002/spe.4380220303
https://doi.org/10.1145/2034654.2034663
https://doi.org/10.1145/953428.953435
https://doi.org/10.1145/953428.953435
https://doi.org/10.1007/BF01932308
https://doi.org/10.1007/BF01932308
https://doi.org/10.1145/3357766.3359542
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1145/1993498.1993532
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379

Grammar-Based Testing for Little Languages

SLE ’20, November 16-17, 2020, Virtual, USA

id_dcl(fun) : enter takes vdecl (; vdecl)* returns (type | nothing::nothing) upd_fun body leave

when case expr::bool : stmts end (case expr:bool : stmts end)* (otherwise : stmts end)?

program — initialize enter programid : funcdef” main : body leave cleanup
flef -

type — boolean:bool | (boolean array)::bool_array | integer:int | (integer array):int_array
varseq — mark id_dcl(var) (', id_dcl(var))* : type upd_vars

body — vardecl? clear stmts end

vardecl — varseq ; (varseq;)*

stmts — chillax | stmt (; stmt)*

stmt — assign | call | return | input | output | case | loop

idexp — id_ref(var) | make_array id_ref(var) [simple:int]

assign — let e:any dup idexp = expr | let id_ref(var):array = array simple:int
call — do e:nothing id_ref(fun) (expr (, expr)*) unmark

input — input idexp:scalar

output — output elem (. elem)*

elem — string | expr:scalar

return — pop in_proc | pop in_func expr

case —

loop — while expr::bool : stmts end

expr:bool — simplexint (= | >= | > | <= | < | /=) simplezint

expr — simple

simple::bool — term::bool (= | +) term::bool)*

simple:int — term:int (or term:int)*

simple — term

term:bool — factor::bool (and factor:bool)*

— factorzint ((/ | * | rem) factor:int)*
term — factor

factor:bool — not factor:bool | true | false
factor:int — num

factor

term::int

— id_ref(fun) Cexpr (, expr)*) unmark | (expr) | idexp

Figure 5. AMPL grammar with type annotations and mark-up tokens.

The procedure n is declared as taking two booleans, and two
integer arrays as arguments, and returning nothing. The

recursive do calls n with arguments of the correct types.

However, the instructor implementation reports that the
third argument (gs81) is not of the correct type and calls an
error function.

Bug #2: Unexpected Failure. The following type correct
program produces an undocumented error message in the
instructor compiler. The test was generated under the error
model None.

program a :
ua: takes f : boolean array
returns nothing
pop ua(f)
end
main :
b : integer array ;
pop
end
=> illegal procedure pop expression

The procedure ua is declared, taking one boolean array as
an argument and returning nothing. The body of the proce-
dure is a single pop statement called the result of calling ua
recursively. The instructor compiler detects the attempt to
pop a value from a procedure, and calls an undocumented
error function.

Bug #3: Unexpected Pass. The following type incorrect
program (generated under the error model Function instead of
variable) is erroneously accepted by the instructor compiler.

program a:
o: takes ¢, x, s : boolean
returns integer array
y, br8la, b7, rn6aa :
p : integer;

integer array;

gf, v : integer array;
let br81a = o
end

main : chillax end
=> Generated a.class

SLE ’20, November 16-17, 2020, Virtual, USA

The function o is declared, taking three boolean values as
arguments, and returning an integer array. Some local vari-
ables are then declared, including br81a, an integer array.
Under this error model, we expect to see an occurrence of a
reference to a function where a reference to a variable was
expected. This is the case in the assignment, let br81a =
o0, where a function is being assigned to an integer array.

A.3 Error Models

Array instead of scalar. This error model guarantees the
use a reference to an array where a scalar value is expected,
producing either an incompatible types or illegal array oper-
ation error messages.

program a:
main:
p, n, b : integer array ;
input n[(p)]
end

=> incompatible types (integer array and integer)

for array index of 'n

Array instead of scalar (generic). This error model guar-
antees the use of an array as an argument where a scalar was
expected, producing only scalar expected error messages.
program a:
main:
X: integer array;
input x
end
=> scalar expected instead of 'x'

Scalar in array assignment. This error model guarantees
the assignment of the result of an array initialisation to a
scalar variable.

program a:
main:

v : integer ;

let v = array v
end
=> 'v' is not an array

Boolean instead of integer. This error model guarantees
that the use of a boolean variable where an integer is ex-
pected. The example shows the attempted initialization of
an array using a boolean size argument.
program a:
main:
s : boolean array ;
input s[false]
end
=> incompatible types (boolean and integer)

for array index of 's

Function instead of variable. This error model guarantees
the occurrence of a function or procedure where a variable

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd Fischer

was expected. The example shows an illegal assignment of a
function to an integer array.

program a:
ji: takes s : boolean
returns nothing

input ji

end

main :
pop

end

=> 'ji' is not a variable

Integer instead of boolean. This error model guarantees
the occurrence of an integer where a boolean was expected.
The example shows an illegal usage of an integer in a boolean
expression.

program a:
main:

output not @
end
=> incompatible types (integer and boolean) for 'not'

Mismatched types in assignment. This error model guar-
antees the occurrence of an assignment where the types are
mismatched. The example shows the illegal assignment of a
boolean to an integer variable.

program a:
main:
m : boolean ;
ek2, k : integer ;

z . integer ;
letm=2remk / z

end

=> incompatible types (integer and boolean)
for assignment to 'm'

Mismatched types in function parameters. This error
model guarantees the occurrence of a call to a function or
procedure with the correct number of arguments, but where
the types are mismatched. The example shows the illegal
assignment of a boolean to an integer variable.

program a:
ts: takes nc : boolean
returns nothing
w : boolean array ;
while nc or nc: do
ts(w)
end;
do ts(nc)
end
main: chillax end
=> incompatible types (boolean array and boolean)
for parameter 1 of 'ts'

Grammar-Based Testing for Little Languages

Not an array. This error model guarantees the use of a non-
array variable where an array is expected, such as indexing
and array initialisation.
program a:
main:
t, i, e
input e[0]
end
=> 'e' is not an array

integer;

Redeclaration in scope. This error model guarantees the
declaration of name in a scope where that name is already
visible.
program a:
main:
e, e : boolean;
pop
end
=> multiple definition of 'e'

Reference out of scope. This error model guarantees a
reference to a name that is not visible in the current scope.

program a:
k: takes m : integer
returns nothing
chillax
end
main
input m
end
=> the identifier 'm

is unknown

Too few arguments. This error model guarantees a call
to a function or procedure with fewer arguments than is
required.

SLE ’20, November 16-17, 2020, Virtual, USA

program a:
g: takes g2t, z3
returns nothing
do g(z3)
end
main : chillax end
=> too few arguments for call of 'g'

integer

Too many arguments. This error model guarantees a call
to a function or procedure with more arguments than is
required.

program a

x5sla: takes i : boolean array

returns nothing
do x5stla(i, i)

end

main: chillax end

=> too many arguments for call of 'x5sla’

Undeclared identifier. This error model guarantees a ref-
erence to a name that has not been declared in any scope.

program a:

main:
o : boolean ;
input g

end

=> the identifier 'g

1

is unknown

Variable instead of function. This error model guarantees
the use of a variable where a function is expected.

program a:
s: takes u : boolean
returns nothing

do u(u)
end

main : chillax end
=> 'u' is not a procedure

	Abstract
	1 Introduction
	2 Grammar-Based Test Suite Construction
	3 Context and Experimental Setup
	4 Syntactic Testing
	4.1 Systematic Coverage-Based Positive Test Suites
	4.2 Negative Test Suites
	4.3 Combined Systematic Test Suites
	4.4 Random Test Suite Generation
	4.5 Combined Systematic/Random Test Suites

	5 Testing Contextual Constraints
	5.1 Testing Scoping Rules
	5.2 Testing Typing Rules

	6 Threats to Validity
	7 Related Work
	8 Summary and Lessons Learned
	Acknowledgments
	References
	A Appendix
	A.1 Typed AMPL Grammar
	A.2 Bugs in Instructor Compiler
	A.3 Error Models

