
DTLS-Fuzzer: A DTLS Protocol State Fuzzer
Paul Fiterău-Broştean , Bengt Jonsson , Konstantinos Sagonas , Fredrik Tåquist

Uppsala University, Uppsala, Sweden
{paul.fiterau_brostean, bengt, kostis, fredrik.takvist}@it.uu.se

Abstract—DTLS-Fuzzer is a protocol state fuzzer for imple-
mentations of DTLS clients and servers. DTLS-Fuzzer uses
model learning to generate a state machine model of a DTLS
implementation, capturing its input/output behavior. This model
can be used for model-based testing or can be analyzed for
security vulnerabilities and specification violations. This demo
abstract overviews the architecture, API, and usage of the tool.

Index Terms—model learning, network security testing, model-
based testing

I. INTRODUCTION

Protocol state fuzzing is a testing technique which has been
used successfully to test implementations of critical protocols
such as TLS [4], SSH [9], DTLS [7] and QUIC [5]. The
technique uses model learning [18] to automatically infer state
machines of protocol implementations. Model learning is an
automated black-box technique in which selected sequences of
messages are sent to the implementation, in order to produce
a Mealy machine capturing how the implementation reacts
to message flows. This Mealy machine is then analyzed to
spot flaws in the implementation’s control logic. Protocol state
fuzzing requires a protocol-specific test harness, aka a Mapper,
which translates between symbols in the Mealy machine and
packets exchanged with the System Under Test (SUT).

DTLS-Fuzzer [2] implements a protocol state fuzzing frame-
work for DTLS [15] and, in doing so, tackles the challenges that
developing such a framework entails. Constructing a Mapper
is often difficult and time-consuming, particularly for complex
protocols such as DTLS. DTLS-Fuzzer provides a Mapper
that works for both DTLS clients and servers. Built on top of
TLS-Attacker [16], [17], an extensible (D)TLS test framework,
the Mapper supports different key exchange algorithms and
certificate authentication settings. This support proved crucial
in a recent application of DTLS-Fuzzer to test widely used
DTLS server implementations [7]. The application produced
models exposing bugs (incl. vulnerabilities) in all nine libraries
tested, and resulted in fixes to five of them. This demo abstract
and associated video [6] present a version of DTLS-Fuzzer,
that now includes support for DTLS clients.

II. ARCHITECTURE

At a high level, DTLS-Fuzzer comprises two main compo-
nents, which are shown in Fig. 1. The Learner, the component
implementing model learning, is based on LearnLib [3], [12],
a Java library implementing various model learning algorithms.

Work partially funded by the Swedish Research Council (Vetenskapsrådet),
the Swedish Foundation for Strategic Research through project aSSIsT, and
the Knut and Alice Wallenberg Foundation through project UPDATE.

Learner
[LearnLib]

Mapper
[TLS-Attacker] SUT

ClientHello Record(..ClientHello(..))

Record(..ServerHello(..))ServerHello

Fig. 1. Protocol state fuzzing setup implemented in DTLS-Fuzzer

The Mapper, implemented using TLS-Attacker, mediates the
Learner’s communication with the SUT.

Upon receiving an input symbol from the Learner, the
Mapper instantiates the corresponding message, encapsulates
it in a DTLS record (the message carrier in DTLS), sends the
record to the SUT, gathers the SUT’s response, extracts the
DTLS messages, and returns the corresponding output symbols.
In order to translate between symbols and DTLS records, DTLS-
Fuzzer’s Mapper maintains the state of its interaction with the
SUT, which we will refer to as the execution context. For each
input symbol, the Mapper creates the corresponding DTLS
message, updates and uses its state to configure message fields.
The Mapper updates its state again when receiving a response
from the SUT.

TlsInput

ServerHelloInput

GenericTlsInput

…

Fig. 2. Class hierarchy implementing input symbols

DTLS-Fuzzer implements input symbols using the class
hierarchy shown in Fig. 2. The abstract class TlsInput provides
an abstract representation for all input symbols. There are two
kinds of TlsInput subclasses implementing input symbols.
Specific subclasses, such as ServerHelloInput, can be used
to define input symbols for specific DTLS messages. The
handling of these symbols has been specifically adjusted for
model learning (e.g., so that more compact models are inferred).
The GenericTlsInput subclass, on the other hand, can be
used to define symbols for a wide range of DTLS messages.
DTLS-Fuzzer applies TLS-Attacker’s handling for sending
these messages, which lacks model learning adjustments but
is often sufficient to generate usable models.

With respect to output processing, the Mapper forms output
symbols by extracting the types of the message received from
the SUT. Strings describing these types (e.g., "ServerHello")
are then encapsulated in a TlsOutput instance and provided
to the Learner. Exceptional cases arise when no message is
received or the message cannot be decrypted. For each such
case the Mapper produces a specific TlsOutput.

https://orcid.org/0000-0002-5185-0035
https://orcid.org/0000-0001-7897-601X
https://orcid.org/0000-0001-9657-0179
https://orcid.org/0000-0003-4066-9078
https://github.com/assist-project/dtls-fuzzer
https://github.com/tls-attacker/TLS-Attacker
https://youtu.be/KtEpwYC-f9M
https://learnlib.de/


III. INTERFACE

DTLS-Fuzzer requires an input alphabet, which specifies
the input symbols to use during model learning. The alphabet
is provided in an XML file. When processed, the file is
unmarshalled using the JAXB framework [14], resulting in
a collection of TlsInput instances, one for each child element
of the root element alphabet.
<alphabet>
<HelloVerifyRequestInput name="HelloVerifyRequest"/>
<ServerHelloInput suite="TLS_PSK_WITH_AES_128_CCM"
name="PskServerHello"/>

<ServerHelloDoneInput name="ServerHelloDone"/>
<ChangeCipherSpecInput name="ChangeCipherSpec"/>
<FinishedInput name="Finished"/>
<GenericTlsInput name="Application"> <Application/>
</GenericTlsInput>
<GenericTlsInput name="Alert"> <Alert/>
</GenericTlsInput>

</alphabet>

Displayed above is a typical alphabet we would use to
test DTLS clients. It defines input symbols for seven distinct
messages (e.g., HelloVerifyRequest). The names of alphabet’s
child elements correspond to those of the classes that implement
the symbols, the attributes correspond to fields of these classes.
The common attribute, name, determines the label under which
the symbol will appear in the generated state machine model.
GenericTlsInput elements contain a specification of the
encapsulated DTLS message which is highly customizable;
most message fields can be adjusted (e.g., by setting them
to fixed values), otherwise DTLS-Fuzzer will automatically
choose appropriate values.

Learning Parameters: A user can select algorithms for
hypothesis generation (e.g., TTT [11]) and hypothesis validation
(e.g., Random Walk [13]), the two core steps of model
learning. For each algorithm, the user can configure associated
parameters such as the bound on the number of tests executed
before a hypothesis is deemed “correct”, and returned as the
learned model.

SUT Parameters: The main SUT parameters are: 1) the
command used to execute the SUT (which differs between
implementations); 2) the time to wait for the SUT to start
before sending messages to it; 3) the time to wait for each
response. The last two parameters are important in ensuring
that the output presented to the time-agnostic Learner depends
uniquely on the input sequence and is not affected by time
effects. Such could be the case if, e.g., after sending a message,
we do not give the SUT sufficient time to produce a response.

IV. USAGE

In the typical use-case scenario, DTLS-Fuzzer is applied on
a specific SUT. This involves the following steps: 1) building
DTLS-Fuzzer; 2) deploying the SUT; 3) running DTLS-Fuzzer
with appropriate arguments; 4) (manually) analyzing models.
Because of DTLS-Fuzzer’s support infrastructure, these steps
can often be performed using four commands from DTLS-
Fuzzer’s parent directory. As an example, we show commands
that perform these steps to test MbedTLS [1], a (D)TLS library
commonly used to secure embedded applications.

1 $ bash prepare.sh
2 $ bash setup_sut.sh mbedtls-2.26.0
3 $ java -jar target/dtls-fuzzer.jar \
4 args/mbedtls/learn_mbedtls_client_psk_rwalk
5 $ xdot output/mbedtls.../learnedModel.dot

We start by building DTLS-Fuzzer using the prepare.sh

script (Line 1), which downloads TLS-Attacker 3.0b (the
version DTLS-Fuzzer relies on), and uses mvn to install TLS-
Attacker and DTLS-Fuzzer. We then use the setup_sut.sh

script to deploy MbedTLS 2.26.0 (Line 2). The script automates
deployment for nine distinct libraries. Next, we launch DTLS-
Fuzzer with arguments for its parameters. Arguments can be
provided by command-line or, as done on Line 4, through
an argument file. DTLS-Fuzzer contains over 50 pre-made
argument files for common learning experiments. As their
names suggest, these files are parameterized by the SUT they
are designed for, the alphabet configuration (e.g., the key
exchange algorithm the input alphabet uses) and the algorithm
used for hypothesis validation. Other arguments, such as the
algorithm used for hypothesis construction, almost never have
to be adjusted. Once DTLS-Fuzzer finishes learning, we
can visualize the model using e.g., xdot [10] (Line 5). The
experiment ends with manual analysis of the model for bugs.
Our demo video [6] revisits this scenario, and shows how
supporting scripts can ease model analysis. Similar steps are
performed to test other SUTs, noting that the input alphabet
can be manually constructed or selected from DTLS-Fuzzer’s
pre-made alphabets, and should include messages that both
DTLS-Fuzzer and the SUT support. Also, to execute the SUT
we need DTLS client/server programs. Often, such programs
come packaged with the SUT.

V. CHALLENGES AND FUTURE WORK

We end this brief demo abstract with some challenges and
future development plans. Currently, time parameters have to
be set carefully to avoid unwanted time effects which may
hinder model learning. In the worst case, one may even have
to make changes to the SUT to make it less time-sensitive.
DTLS-Fuzzer provides several mitigations, e.g., discarding
duplicate messages or executing an input sequence multiple
times, and only returning the most common output sequence.
This makes learning more robust, but does not completely avoid
the problem, which, at its core, lies in the use of a time-agnostic
learning algorithm to infer a time-dependent SUT.

Another area for improvement stems the fact that the models
DTLS-Fuzzer produces have to be analyzed manually, which
is a time-consuming task, requires protocol knowledge, and
can easily miss bugs. DTLS-Fuzzer provides scripts that aid in
model visualization. Still, these cannot replace a mechanism
for automatic bug detection. We have recently devised such a
mechanism wherein state machine bugs are specified as finite
automata [8], and then automatically identified on an automaton
derived from the SUT’s model using automata intersection. We
plan to extend DTLS-Fuzzer with this mechanism, to further
enhance its support for testing automation.



REFERENCES

[1] ARM, “arm MBED,” https://tls.mbed.org/, Online; accessed 12-
December-2021.

[2] aSSiST Project, “DTLS-Fuzzer,” https://github.com/assist-project/dtls-
fuzzer, Online; accessed 17-December-2021.

[3] Chair for Programming Systems, “LearnLib,” https://learnlib.de/, TU
Dortmund University, Online; accessed 17-December-2021.

[4] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementations,”
in 24th USENIX Security Symposium. USENIX Association, Aug. 2015,
pp. 193–206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter

[5] T. Ferreira, H. Brewton, L. D’Antoni, and A. Silva, “Prognosis:
Closed-box analysis of network protocol implementations,” in ACM
SIGCOMM 2021 Conference. ACM, Aug. 2021, pp. 762–774. [Online].
Available: https://doi.org/10.1145/3452296.3472938

[6] P. Fiterău-Broştean, “DTLS-Fuzzer Demo Video,” https://youtu.be/
KtEpwYC-f9M, 2022.

[7] P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas,
and J. Somorovsky, “Analysis of DTLS implementations using
protocol state fuzzing,” in 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 2523–2540.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/fiterau-brostean

[8] P. Fiterău-Broştean, B. Jonsson, K. Sagonas, and F. Tåquist, “Automata-
based automated detection of state machine bugs in protocol implemen-
tations,” 2022, submitted.

[9] P. Fiterău-Broştean, T. Lenaerts, J. de Ruiter, E. Poll, F. W.
Vaandrager, and P. Verleg, “Model learning and model checking of
SSH implementations,” in Proceedings of the 24th ACM SIGSOFT
International SPIN Symposium on Model Checking of Software,

ser. SPIN 2017. ACM, 2017, pp. 142–151. [Online]. Available:
https://doi.org/10.1145/3092282.3092289

[10] J. Fonseca, “xdot 1.2,” https://pypi.org/project/xdot/, Online; accessed
12-December-2021.

[11] M. Isberner, F. Howar, and B. Steffen, “The TTT algorithm: A
redundancy-free approach to active automata learning,” in Runtime
Verification: 5th International Conference, RV 2014, Proceedings,
ser. LNCS. Springer, Sep. 2014, vol. 8734, pp. 307–322. [Online].
Available: https://doi.org/10.1007/978-3-319-11164-3_26

[12] ——, “The open-source LearnLib - A framework for active automata
learning,” in Computer Aided Verification - 27th International Conference,
CAV, ser. LNCS, vol. 9206. Springer, 2015, pp. 487–495. [Online].
Available: https://dx.doi.org/10.1007/978-3-319-21690-4_32

[13] D. Lee and M. Yannakakis, “Principles and methods of testing finite
state machines—a survey,” Proceedings of the IEEE, vol. 84, no. 8,
pp. 1090–1123, 1996. [Online]. Available: https://ieeexplore.ieee.org/
document/533956

[14] Oracle, “JAXB. Java Architecture for XML Binding,” https://javaee.
github.io/jaxb-v2/, Online; accessed 12-December-2021.

[15] E. Rescorla and N. Modadugu, “Datagram transport layer security
version 1.2,” RFC 6347, pp. 1–32, Jan. 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6347.txt

[16] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1492–1504. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978411

[17] “TLS-Attacker,” https://github.com/tls-attacker/TLS-Attacker, Online;
accessed 12-December-2021.

[18] F. W. Vaandrager, “Model learning,” Commun. ACM, vol. 60, no. 2, pp.
86–95, 2017. [Online]. Available: https://doi.org/10.1145/2967606

https://tls.mbed.org/
https://github.com/assist-project/dtls-fuzzer
https://github.com/assist-project/dtls-fuzzer
https://learnlib.de/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1145/3452296.3472938
https://youtu.be/KtEpwYC-f9M
https://youtu.be/KtEpwYC-f9M
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1145/3092282.3092289
https://pypi.org/project/xdot/
https://doi.org/10.1007/978-3-319-11164-3_26
https://dx.doi.org/10.1007/978-3-319-21690-4_32
https://ieeexplore.ieee.org/document/533956
https://ieeexplore.ieee.org/document/533956
https://javaee.github.io/jaxb-v2/
https://javaee.github.io/jaxb-v2/
http://www.rfc-editor.org/rfc/rfc6347.txt
http://doi.acm.org/10.1145/2976749.2978411
http://doi.acm.org/10.1145/2976749.2978411
https://github.com/tls-attacker/TLS-Attacker
https://doi.org/10.1145/2967606

	Introduction
	Architecture
	Interface
	Usage
	Challenges and Future Work
	References

