
Applying Symbolic Execution to Test Implementations
of a Network Protocol Against its Specification

Hooman Asadian , Paul Fiterău-Broştean , Bengt Jonsson , Konstantinos Sagonas
Department of Information Technology, Uppsala University, Uppsala, Sweden

{hooman.asadian, paul.fiterau_brostean, bengt, kostis}@it.uu.se

Abstract—Implementations of network protocols must conform
to their specifications in order to avoid security vulnerabilities
and interoperability issues. We describe our experiences using
symbolic execution to thoroughly test several implementations
of a network security protocol against its specification. We
employ a methodology in which we first extract requirements
from the protocol’s RFC and turn them into formulas. These
formulas are then utilized by symbolically executing the protocol
implementation to explore code paths that can be traversed
on packet sequences that violate a requirement. When this
exploration exposes a bug, corresponding input values are
produced and turned into test cases that can validate the bug
in the original implementation. Since we let symbolic execution
be guided by requirements, it can naturally produce a wide
variety of requirement-violating input sequences, which is difficult
to achieve with existing techniques for protocol testing. We
applied this methodology to test four different implementations
of DTLS against the protocol’s RFC. We were able to quickly
expose a known CVE in an older version of OpenSSL, and to
discover numerous previously unknown vulnerabilities and non-
conformance issues in DTLS implementations, which have by
now been confirmed and fixed by their implementors.

Index Terms—symbolic execution, network security testing

I. INTRODUCTION

Implementations of network protocols, such as TCP, TLS,
DTLS, etc., must conform to their specifications in order to
avoid security vulnerabilities and interoperability issues. Even
seemingly innocent deviations from the standard specification
may open implementations up for security attacks. Examples
include Heartbleed [8] and the TLS POODLE [3], [23]
downgrade vulnerability enabled by insufficient checking of
length fields or version numbers in input packets. At the same
time, testing of protocol implementations is made difficult
by the fact that they are stateful. To test the processing of a
particular packet, the implementation must first be brought to
a specific state by an appropriate packet sequence. Moreover,
the requirements concerning that packet may depend on the
preceding sequence. Thus, despite the fact that techniques for
testing of single-input programs such as fuzzing [39] and sym-
bolic execution [7], [12], [19] have made impressive progress
in recent years, their extensions to stateful protocols [25], [28],
[29] have not yet achieved the same level of effectiveness as
their single-input counterparts: these approaches are not able
to consider a sufficiently large range of adversarial inputs, and
may miss bugs that are exposed by specific input sequences.

Work partially funded by the Swedish Research Council (Vetenskapsrådet)
and the Swedish Foundation for Strategic Research through project aSSIsT.

In this paper, we describe our experiences using symbolic
execution to thoroughly test implementations of a network
protocol against its specification. We employ a methodology, in
which we first form a specification by extracting requirements
from the protocol’s RFC and formulating them as assertions
over the sequence of packets exchanged during a session. The
extraction can be done incrementally, considering individual
requirements separately. One such requirement could for
example concern the sequence numbers in a sequence of
packets, another one the version negotiation, etc. We then use
symbolic execution to search for code paths and corresponding
packet sequences that violate these requirements. In order to
test the processing of a sequence of packets, each protocol
party is tested separately: we consider the packets it receives
as a sequence of inputs and check the party’s output when
processing this sequence. We leverage symbolic execution to
explore the code paths that an implementation may traverse
when processing a packet sequence, tailoring it to explore only
those code paths and inputs which expose potential requirement
violations. Whenever such a violation, crash, or memory error
is observed, the symbolic execution engine generates specific
values that trigger this error, which are used to construct a
complete test case to validate the bug. To achieve scalability
for symbolic execution over a packet sequence, only those parts
of input packets that are relevant for the tested requirement
are made symbolic, using a pre-recorded sequence of packets
as a basis.

We applied our methodology to test four implementations
of DTLS against the protocol’s RFC. The DTLS (Datagram
Transport Layer Security) protocol is a variation of TLS
over UDP. DTLS is widely used in wireless networks, and
is currently one of the primary protocols for securing IoT
applications [30]. Two of the DTLS implementations we tested
(OpenSSL and MbedTLS) are among the most widely used
and well-tested. Using our methodology, we were able to detect
numerous, previously unknown, security vulnerabilities and
non-conformance issues in them, which have been confirmed
and/or fixed by now.

In short, the main contributions of our work are:
• We describe an experience in using symbolic execution

to thoroughly test implementations of a network protocol
against its specification, in which we tailor symbolic
execution to explore code paths that can expose violations
of requirements formulated over the processing of a
sequence of packets in a session.

https://orcid.org/0000-0003-0090-634X
https://orcid.org/0000-0002-5185-0035
https://orcid.org/0000-0001-7897-601X
https://orcid.org/0000-0001-9657-0179

• We describe how our effort was applied to four DTLS
implementations against the protocol’s RFC, demonstrat-
ing the effectiveness of our methodology on DTLS by
revealing more than thirty previously unknown vulnera-
bilities and non-conformance bugs in well-tested DTLS
implementations.

• We provide replication material [2] for all our experiments.
Outline: After an overview of our effort in the next section,

in §III we show how requirements from DTLS’s RFC are
encoded as formulas. We describe our implementation in §IV,
evaluate its effectiveness in §V, discuss related works in §VI,
and end with some final remarks.

II. OVERVIEW OF OUR METHODOLOGY

In this section, we give a high-level overview of the
methodology we used. It consists of three steps: i) a step
where requirements are extracted from the protocol’s RFC or
specification and turned into formulas; ii) a step where (nega-
tions of) these formulas are represented as assumptions and
assertions in the source code of the protocol’s implementation,
and where symbolic execution is used to explore code paths
that expose bugs in the implementation and produce values
for (selected) parts of the input(s) that follow these paths;
and iii) a step where complete test cases for these bugs are
constructed and are used to validate the bugs in the unmodified
implementation. We detail these steps below.

A. Extracting Specification Requirements

Protocols encompass specific requirements over sequences
of packets exchanged by two or more parties, sequences which
are also known as protocol sessions. For DTLS, as well
as for any other network protocol, we can extract a set of
these requirements by scrutinizing its Request for Comments
(RFC) [27, p. 13]. This task is facilitated by the fact that it is
common for RFCs to use particular keywords (e.g., "MUST",
"MUST NOT", "REQUIRED", "SHALL NOT", etc.) to signify
the strictness of the protocol’s requirements [5]. For example,
the keyword "MUST" expresses that the definition is an absolute
requirement of the specification, while "SHOULD" indicates a
recommendation. Starting from these keywords, one can derive
a set of requirements that can be represented by formulas over
sequences of inputs and outputs.

A prominent class of requirements, which we will refer
to as input validity requirements, concerns checking well-
formedness of (the sequence of) inputs. For example, the
following sentence from the DTLS RFC, specifies a requirement
regarding uniqueness of record sequence numbers in sessions:

For each received record, the receiver MUST verify that the record
contains a sequence number that does not duplicate the sequence
number of any other record received during the life of this session.

For a set of records R received during a DTLS session, we can
represent this requirement in predicate logic by the formula:

∀r,r′∈R: r 6=r′ =⇒ r.sequence_number 6= r′.sequence_number (1)

Another class of requirements concerns output generated
in response to (a sequence of) inputs. We refer to these as

input-output requirements. For example, the following sentence,
extracted from the DTLS RFC [27, p. 17] and its errata (ID:
5186), concerns the sequence number in a server’s response.

In order to avoid sequence number duplication in case of multiple
cookie exchanges, the server MUST use the message_seq in the
ClientHello as the message_seq in its initial ServerHello.

Letting resp(r, i) represent the i-th output generated in re-
sponse to input record r, we can express this requirement by
the formula:

∀r∈R: r.msg_type= client_hello =⇒
(resp(r,1).msg_type= server_hello =⇒

resp(r,1).message_seq= r.message_seq)
(2)

which uses the fact that the msg_type field of a record r contains
the type of its enclosed (and perhaps fragmented) message.

B. Symbolic Execution

Given a set of requirements expressed using formulas such
as (1) and (2), our goal is to detect bugs (constraint violations,
non-conformances, crashes and security vulnerabilities that may
be associated with not adhering to the RFC, etc.) in protocol
implementations (SUTs). Conceptually, the core idea of this
step is simple. For each requirement we insert instrumentation
into the SUT’s source code as follows: 1) input constraints
under which the requirement can be violated are inserted
as assumptions on input to the SUT’s source code, and
2) checks whether the SUT actually performs an action that
violates the requirement are inserted as assertions. We then use
symbolic execution to explore those executions that satisfy the
assumptions on input, looking out for actions that trigger an
assertion violation, crash, or memory error, and constructing
test cases that are witnesses for each of these bugs.

Symbolic execution analyzes programs for which (some of)
the input variables are designated as symbolic. It explores
the code paths that are possible for some values of the
symbolic input, and also provides input values that make
executions follow specific code paths. In order to apply
symbolic execution to a SUT, we represent the sequence of
input packets as structured-type variables, which can be named
after their message types as client_hello, client_key_exchange,
etc. Making complete packets symbolic would in many cases
not scale, therefore only the fields that can be expected to be
relevant for the considered requirement are made symbolic.
For instance, the payload, length, and several other fields, are
unlikely to affect the processing of sequence numbers, and
need not be made symbolic when checking requirements on
sequence numbers. The non-symbolic fields must then be given
concrete default values; we take these from the packet sequence
in a pre-recorded session.

Let us illustrate the above with the examples from §II-A.
An input validity constraint, such as Formula (1), refers to a
typically unrestricted set R of records received during a DTLS
session1. We can specialize R to be a set of three records
carrying message types client_hello2, client_key_exchange,

1Occasionally, the RFC might specify related constraints that limit R.

and change_cipher_spec. In this set, all its elements have
a sequence_number field. To prepare for symbolic execution,
we pre-record a session containing these message types,
represent the records as structured-type variables and make their
sequence_number fields symbolic. We then add to the SUT’s code
the following assume statement (in C/C++ syntax), assuming
the negation of the constraint expressed by that formula (as this
is the constraint under which the requirement can be violated):
assume(! // negate the conjunction below

(client_hello2.sequence_number != client_key_exchange.sequence_number &

client_hello2.sequence_number != change_cipher_spec.sequence_number &

client_key_exchange.sequence_number != change_cipher_spec.sequence_number))

What we have done here is to manually construct the pair-wise
conjunction that the universal quantifier of Formula (1) will
produce, by specializing it to the case of three records with the
chosen message types. Of course, when the formulas are more
complicated or the sets of records that they involve are larger,
such assume statements can call appropriate auxiliary functions
that we add to the SUT instead of specifying the constraints
inline, as we did here. We must also add an assert statement
to check that the protocol does not use invalid input in some
forbidding way. For this case, the DTLS 1.2 RFC [27, p. 14]
specifies that “Invalid records SHOULD be silently discarded”, so
we may want to check whether an implementation achieves
progress (e.g., by changing states) even after reception of invalid
records. In implementations that already provide an API to
inspect their internal state(s) or when it is easy to add one,
the detection of such non-conformances can be fine-grained
and very precise. A coarser-grained approach, which is the one
we have implemented, is to simply check whether protocol
interactions complete successfully (e.g., handshake is achieved)
even in the presence of an invalid record in a test; this is done
by an assert(false) at the point where the SUT is about to
complete the interaction. For the DTLS protocol, this clearly
indicates the violation of a “SHOULD”-type requirement, and
thus non-conformance of the SUT to the standard.

For input-output requirements, such as Formula (2), we
augment the SUT with structure-type variables that represent
relevant output packets. Specializing resp(r,i) to the case
where r is the packet client_hello2, we add the assertion

assert(// checks message_seq validity

(resp(client_hello2,1).msg_type != server_hello) |

(resp(client_hello2,1).message_seq == client_hello2.message_seq))

Since an input-output requirement can be violated only on
valid inputs, we add an assume statement ensuring the validity
of the field client_hello2.message_seq.

In summary, a protocol requirement expressed by a first-order
logic formula is checked by augmenting the SUT as follows:
1) variables are inserted to represent the input packets and (in
the case of input-output requirements) relevant output packets;
2) the formula is specialized by instantiating its quantifiers to
the possible values in the pre-recorded sequence, producing
a quantifier-free expression over the packet-representing vari-
ables; 3) for an input validity requirement, its negation is added
in an assume statement, and an assert statement is added to
check that the invalid inputs are not handled in a forbidden way;

4) for an input-output requirement, the expression is added in
an assert statement checking correctness of the output, together
with an assume statement ensuring the validity of inputs.

C. Test Case Construction and Validation

Starting from some pre-recorded valid input sequence S of
records as seed, and given some time budget T , a symbolic
execution tool such as KLEE [7] will explore a number of
code paths of SUTa (the SUT that has been extended with
assume and assert statements and where some fields have been
made symbolic). For each code path that satisfies the assume
statements and triggers an assertion violation, crash, or memory
error, we record and return a tuple of values 〈v1, . . . , vk〉
for the fields f1, . . . , fk of records in S which have been
made symbolic. For each such code path, we can therefore
construct a test case by substituting the value of record field
fi with vi and keeping all other values in records of seed S
unchanged. Each of these test cases executes a unique code
path of SUTa. We can simply run these test cases in the
original SUT for validation. For tests that result in crashes
(e.g., segmentation faults, memory errors, etc.), the existence of
a bug in the SUT is clear. Tests that trigger assertion violations
expose non-conformances and other policy violations, given
our instrumentation to check protocol requirements.

III. DTLS AND ITS SPECIFICATION REQUIREMENTS

DTLS is a client-server protocol that secures communica-
tion over datagram-based transport layer protocols. It is an
adaptation of TLS, fulfilling a similar purpose, but doing so
for unreliable transport layer protocols such as UDP. DTLS is
available in two standardized versions, 1.0 [26] and 1.2 [27],
which are respectively based on TLS 1.1 [14] and TLS 1.2 [15].

DTLS secures communication through the establishment and
use of session keys. To that end, it is structured in several layers.
The Record layer performs encryption and encapsulation of sent
data and decryption and decapsulation of received data. The
Handshake layer establishes session keys and the cryptographic
algorithms to use at the Record layer. Other layers include
ChangeCipherSpec that handles key deployment, Application,
which provides a carrier for application data, and Alert, which
is used to signal unexpected events. Our work concentrates
on the Record and Handshake layers. We first explain the
operation of these layers, before introducing the requirements
defined for each layer.

The Record layer sits at the base, with all other layers
operating directly on top of it. It splits received network data
into records. The payload of these records is decrypted and
authenticated using session keys. The decrypted payload is
divided into messages, which are dispatched to the correspond-
ing upper layer. In the opposite direction, the Record layer
encrypts messages received from upper layers, encapsulates
them into records, and packs the records inside datagrams for
the transport layer. Before deployment of session keys, the
Record layer operates without encryption and authentication
(e.g., messages are extracted directly from record payloads).

Client Server

[ClientHello0 (CH0)]

[HelloVerifyRequest (HVR)]

ClientHello2 (CH2)

ServerHello (SH)
ServerHelloDone (SHD)

ClientKeyExchange (CKE)
ChangeCipherSpec (CCS)

{Finished (FIN)}

ChangeCipherSpec (CCS)
{Finished (FIN)}

{Application (APP)}

Fig. 1: DTLS handshake when pre-shared key (PSK) is used. Encrypted
messages are inside braces. Optional messages are inside square brackets.

The Handshake layer is engaged at the start of each DTLS
session in order to establish session keys and the cryptographic
algorithms to use at the Record layer. This is achieved by
completion of a DTLS handshake. Over the course of this
handshake, the client and server exchange flights of handshake
messages in a specified order; see Fig. 1 showing a handshake
using the pre-shared key (PSK) algorithm. The exact form of
the handshake varies depending on the key exchange algorithm
used to generate session keys. In addition to key establishment,
the Handshake layer is also tasked with fragmentation and
reassembly of handshake messages. Handshake messages when
packed inside a record may be too large to fit inside a datagram.
Consequently, these messages are first split by the Handshake
layer into fragments, before being passed on to the Record
layer. Conversely, fragments received from the Record layer
are first assembled to form unfragmented messages, and only
then processed. We shall revisit these terms in §III-B.

A. Record Layer Requirements

A DTLS record is a structured entity whose fields and types
are specified in the DTLS RFC [27, p. 6]. Fields which are
DTLS-specific (i.e., not part of the corresponding TLS record)

struct {

ContentType type;

ProtocolVersion version;

uint16 epoch; // New field

uint48 sequence_number; // New field

uint16 length;

opaque fragment[DTLSPlaintext.length];

} DTLSPlaintext;

are identified with the
comment New field. As we
can see, the epoch number
field is specified as a 16-
bit unsigned integer, and
the record sequence_number

as a 48-bit unsigned inte-
ger. The type and version fields are defined via enumerated
types. The value of the type field determines the upper layer
the message is destined for. For example, if the value of type is
handshake, the fragment should be passed on to the Handshake
layer, etc. Finally, the fragment field, denoting the message
contained in the record, is defined as a one-dimensional vector.

Given this structure and the TLS and DTLS RFCs, we can
formulate constraints over fields of a set of records R used in
a DTLS session, as follows.

1) Record Version: The DTLS RFC [27, p. 4] specifies only
two versions for DTLS. The formula for this field is simple:

∀r∈R: r.version∈{DTLS1.0, DTLS1.2}

2) Record Length: The TLS 1.2 RFC [15, p. 20] defines
record length as: “The length (in bytes) of the following TLSPlain-
text.fragment.” Moreover, the DTLS 1.2 RFC [27, p. 8] specifies
that the length is “Identical to the length field in a TLS 1.2 record.”
Hence, the length field in DTLS represents the number of bytes
stored in the DTLS record’s fragment field. We capture these
requirements in the following formula, where num_bytes is a
function returning the size of its argument (in bytes).

∀r∈R: r.length= num_bytes(r.fragment)

So far, the requirements for record fields were simple and
quantifying over the set of records R with variables r, r′, . . .
sufficed. But there are also RFC requirements that specify
relations between consecutive records or even sequences of
records that a protocol party receives during a session. We then
equip r with a subscript that denotes the record’s position in
the sequence. Thus r1, r2, . . . is the sequence of records in a
session (r1 is the first record, r2 the second, etc.). We can also
quantify over subscripts. As well, for a record ri, its previous
record is obtained as ri−1 and its next as ri+1.

3) Epoch Number: The epoch field is a two-byte unsigned
integer used to distinguish the session keys a record was
encrypted with. The following excerpt from RFC [27, p. 8]
explains how this field should be updated.

The epoch should be initialized with zero, and should be incre-
mented with every ChangeCipherSpec message sent.

For n received records in a DTLS session, we capture this
requirement with the following formula:

∀i∈N,2≤i≤n:
(r1.epoch=0) ∧
(if ri−1.type = change_cipher_spec then ri.epoch = ri−1.epoch+1

else ri.epoch= ri−1.epoch)

This formula specifies that the epoch of the first record is zero
and that for all subsequent records the value of the epoch field
is either one more than the value of the previous record or has
the same value as it, depending on whether the value of the
type field of the previous record is change_cipher_spec or not.

4) Record Sequence Number: The DTLS 1.2 RFC [27] de-
fines the record sequence_number as a 48-bit unsigned integer for
the purpose of preventing replay attacks. Section II-A quoted
a requirement regarding the uniqueness of the sequence_number

and showed a formula for this requirement (Formula 1). In
the excerpt below, the RFC [27, p. 13,14] additionally requires
rejection of records whose sequence_number values are smaller
than the lowest sequence_number in the current window (i.e.,
the value at the left edge of the window).

Duplicates are rejected through the use of a sliding receive win-
dow. A window size of 64 is preferred and SHOULD be employed
as the default. The "right" edge of the window represents the
highest validated sequence number value received on this session.
Records that contain sequence numbers lower than the "left" edge
of the window are rejected. If the received record falls within the
window and is new, or if the packet is to the right of the window,
then the receiver proceeds to MAC verification.

Assuming a max function that returns the maximum of a set of
values, the requirements for sequence number values are given
by the following formula:

∀i,j∈N,1≤i,j≤n,i 6=j:

(ri.sequence_number 6= rj .sequence_number) ∧
(max({rk.sequence_number−64|1≤k<i}∪{0}) ≤ ri.sequence_number)

The first conjunct is the uniqueness requirement; the second
conjunct specifies the “windowing” requirement.

B. Handshake Layer Requirements

The Handshake layer exchanges a sequence of messages to
establish session keys and cryptographic algorithms. Larger
handshake messages may be split into fragments. An unfrag-
mented message is also regarded as a fragment consisting of
an entire message. The Handshake layer passes to the Record
layer a sequence of fragments, which are encrypted if session
keys have been deployed, and then transmitted as the fragment

fields in a sequence of records. Handshake fragments have
the structure shown below. The fields msg_type and length

struct {

HandshakeType msg_type;

uint24 length;

uint16 message_seq;

uint24 fragment_offset;

uint24 fragment_length;

select (HandshakeType) {

case hello_request: HelloRequest;

case client_hello: ClientHello;

// eight more cases here...

case finished: Finished;

} body;

} Handshake;

indicate the type and length
of the (unfragmented) mes-
sage from which this frag-
ment was derived, whereas
message_seq indicates the or-
der, starting from 0, of that
message in the handshake
interaction. The body field
stores a fragment of the origi-
nal message, whose structure
varies depending on msg_type.
The offset and the length of this fragment are given by the
fragment_offset and fragment_length fields, respectively.

For the Handshake layer, we define formulas over a set M of
received messages, using m to range over individual messages.

1) Handshake Type: The RFC [27, p. 27] specifies the valid
values for msg_type as belonging to the following enumeration:

enum HandshakeType {

hello_request = 0, client_hello, server_hello, hello_verify_request,

certificate = 11, server_key_exchange, certificate_request,

server_hello_done, certificate_verify, client_key_exchange,

finished = 20 };

We can capture the requirement that the valid values for
msg_type are those in the enumeration above with the formula:

∀m∈M : m.msg_type∈{hello_request, client_hello, ..., finished}

We can strengthen this formula if we additionally consider the
ordering of messages imposed by the RFC [27, p. 21]. This
allows us to capture a requirement enforcing correspondence
between the order of a message (given by message_seq) and
its specified msg_type. Formulating this requirement is quite
demanding: the order of a message for a given type may vary
depending on the key exchange the handshake uses, and on the
side receiving the messages (whether it is a client or a server).
To keep the presentation concise, we show the formula for a
handshake that uses PSK (taking the form shown in Fig. 1)

and the side in question is a server. For this particular case,
the requirement can be formulated as follows:

∀m∈ serverPSK(M):

(m.message_seq=0 =⇒ m.msg_type= client_hello) ∧
(m.message_seq=1 =⇒ m.msg_type= client_hello) ∧
(m.message_seq=2 =⇒ m.msg_type= client_key_exchange) ∧
(m.message_seq=3 =⇒ m.msg_type= finished)

The function serverPSK returns the messages from M which the
server receives during PSK handshakes. Similar requirements
can be formulated for clients, as well as for handshakes using
other key exchange algorithms.

Similarly as for records, there are RFC requirements that
specify relations between consecutive messages. We equip m
with a subscript that denotes the message’s position in the se-
quence. Thus m1,m2, . . . is the sequence of received messages
during a session. We can also quantify over subscripts.

2) Message Sequence: The RFC [27, p. 18,19] specifies the
following requirement for message_seq:

The first message each side transmits in each handshake always
has message_seq = 0. Whenever each new message is generated,
the message_seq value is incremented by one. When a message is
retransmitted, the same message_seq value is used.

The excerpt suggests that the value for message_seq equals zero
in the initial message and is incremented with each following
message, except when the same message is retransmitted,
in which case message_seq is unchanged. To capture this
requirement, we must characterize when a message is “the
same” as the previous. We approximate this by equality of
their body fields. This leads to the following formula:

∀i∈N,2≤i≤n:
(m1.message_seq=0) ∧
(if mi.body 6=mi−i.body then mi.message_seq=mi−1.message_seq+1

else mi.message_seq=mi−1.message_seq)

In order to capture requirements related to fragmentation
of messages, we continue to assume a sequence m1,m2, . . .
of messages, and additionally assume that message mi is
fragmented into num_fragments(i) fragments. We use mi[j] to
refer to fragment j of message i. The next four requirements
concern fragmentation.

3) Fragment Reassembly: For reassembling (un)fragmented
handshake messages, the RFC [27, p. 20] mandates that:

When a DTLS implementation receives a handshake message
fragment, it MUST buffer it until it has the entire message.

In other words, this RFC excerpt requires that every byte of
the original message should exist in one of the fragments. We
capture the requirement with the aid of fragment_offset and
fragment_length fields in the following formula:

∀i∈N,1≤i≤n, ∀b,0≤b<mi.length, ∃j,1≤j≤num_fragments(i):
mi[j].fragment_offset≤ b<mi[j].fragment_offset+mi[j].fragment_length

4) Unfragmented Message Offset / Length: If a handshake
message fits in a datagram, fragmentation will not take place.
In this case, the RFC [27, p. 20] specifies the following
requirement on fragment_offset and fragment_length:

An unfragmented message is a degenerate case with
fragment_offset = 0 and fragment_length = length.

With the help of the num_fragments function, this requirement
can be formulated as follows:

∀i∈N,1≤i≤n: num_fragments(i)= 1 =⇒
(mi.fragment_length=mi.length)∧ (mi.fragment_offset=0)

5) Message Sequence in Fragments: In describing fragmen-
tation, the RFC [27, p. 20] specifies the following requirement:

The sender then creates N handshake messages, all with the same
message_sequence value as the original handshake message.

We can infer that the message_sequence of all fragments should
be equal to the message_sequence of the unfragmented message.
We can capture this requirement using the following formula:

∀i∈N,1≤i≤n, ∀j,1≤j≤num_fragments(i):
mi[j].message_sequence=mi.message_sequence

6) Message Length in Fragments: The RFC [27, p. 20]
makes a similar remark regarding the message_length:

The length field in all messages is the same as the length field of
the original message.

Similarly, we can formulate this requirement as the following:

∀i,∈N,1≤i≤n, ∀j,1≤j≤num_fragments(i): mi[j].length=mi.length

7) Handshake Version: Similar to how records of the DTLS
Record layer contain the DTLS version, there are version fields
in the message bodies of ClientHello, HelloVerifyRequest and
ServerHello messages. Similar to III-A1, we can formulate a
requirement for client_version and server_version.

8) Requirements on Length of Fields: Several handshake
messages contain fields that define the length (in bytes) of other
fields. Such fields occur in the body of a handshake message (we
do not show its structure here). We can capture requirements
for such fields in a similar way as for Record Length formula
in §III-A2. For space reasons, we omit their formulas.

We end this section by mentioning that we have formulated
more input validity requirements for DTLS; we chose to
present only the ones above because they revealed bugs in the
implementations we tested. In our evaluation (§V), we will also
check two input-output requirements; that of Formula (2) and
another one which is similar. We will refer to these requirements
as CH0/HVR and CH2/SH Message Sequence.

IV. IMPLEMENTATION

In this section, we describe our implementation, including
efforts to overcome some obstacles. Our implementation is
structured as follows. First, we prepare the SUT’s code for
symbolic execution (§IV-A). Second, we capture concrete
records of a handshake interaction (§IV-B). For a given
requirement, we then make symbolic the fields of captured
records that participate in it and insert corresponding assertions
and assumptions (§IV-C). The functionality for doing so is
provided in a shared library, based on which a series of
test harnesses were developed, one for each SUT we tested.
The SUT is executed symbolically using KLEE [7]. We then

construct test cases (witnesses) from the values of symbolic
variables that KLEE generates when requirement-violating
behaviors or crashes are detected. These test cases are used to
check if the problems can be reproduced on the unmodified
SUT (§IV-D). We detail these steps below.

A. SUT Preparation

To prepare the SUT for symbolic execution, we first make
modifications to its code to ensure it executes deterministically;
this is necessary to make it respond in the same way during
record capture as during the subsequent symbolic execution.
This involves de-randomization (e.g., in TinyDTLS we modified
the function dtls_fill_random, used to compute client/server
random nonces, to fill a buffer with 1’s instead of a random
value), and disabling retransmissions. Finding the code places
where such changes should be made typically involves a search
for the ‘random’ keyword; the changes themselves are simple.

As mentioned in §II-B, we use completing a DTLS hand-
shake as a means of determining whether input validity
requirements are violated. To detect when the handshake
is near completion, we insert an assert(false) at the point
where the SUT is expecting Finished. KLEE will terminate the
current path and generate a corresponding sequence of input
values upon executing such a statement. One may wonder why
failing assertions are inserted when Finished is expected and
not after the handshake is completed. The main reason is to
steer symbolic execution away from complicated code used
for decryption and authentication. (Recall from Fig. 1 that
Finished is the first encrypted message that a side receives.)
This does mean, however, that in order to validate the bug
in the unmodified SUT, we have to provide a valid Finished
message outside of symbolic execution. We revisit this matter
in §IV-D.

B. Record Capture

The next step is to capture the records of a DTLS handshake.
We opted for a PSK handshake of the form shown in Fig. 1,
which by design omits certain cryptographic operations (e.g.,
such as those in authentication and key exchange) compared
to handshakes using other key exchange algorithms. This
minimizes the amount of cryptographic code that is executed
symbolically, and also makes symbolic execution faster.

To capture records, we designed a DTLS test program that
starts by instantiating a client and a server. Upon instantiation,
the client generates an initial ClientHello record. Records are
then passed back and forth between the two parties, with each
transmitted record also stored in a separate file. The end result
is a folder containing a file for each record in the handshake.

The client/server interaction is performed over the SUT’s
API. However, DTLS does not have a standardized API. Con-
sequently, the methods for initialization and sending/receiving
record data differ between the SUTs. This made coding the
initial test program time-consuming (i.e., in the range of a few
days) since it required familiarization with each SUT’s API.
We got inspiration from existing demo programs, in particular
from a program used to fuzz the Mbed TLS library [18].

C. Symbolic Execution

The test program that captures records is extended to a test
harness for symbolic execution with the aid of the shared
library developed as part of this work. The shared library
contains three types of functions:

1) helper functions (e.g., for loading the records from file),
2) functions to parse DTLS records into pre-defined DTLS

data structures with a structure closely resembling that of
DTLS records presented in §III-A, and

3) functions to make specific fields of records symbolic, and
for forming boolean expressions in assumes and asserts.

By defining these functions in a shared library, we can reuse
their functionality to test different DTLS implementations. This
is done by linking the shared library to a new implementation
and simply calling the functions from the test harness. Minor
adaptations are needed to reflect any new extensions a SUT
may support (present in the ClientHello and ServerHello
extension headers) or different lengths of the variable-length
fields (primarily for the cipher_suites field in ClientHello).

Given a requirement, the test harness is used to symbolically
execute one side (a client or a server). It operates as follows.

Record Loading: The harness first calls the shared library
to load the records received by that side during the captured
handshake and stores them in separate data structures. For ex-
ample, function parse_CH0(uint8_t *buf, CH0 *rec) initializes
a ClientHello0-structured record with data from a buffer.

Making Fields Symbolic: Fields that appear in a require-
ment are made symbolic using klee_make_symbolic. Thereafter,
the assumptions on input in the formalization are inserted
as klee_assume statements, and the assertions on output as
klee_assert statements. To aid this step, our shared library pro-
vides methods for constructing the relevant boolean expressions.
For example, it includes the method:

void epochServer(CH0 *client_hello0, CH2 *client_hello2,

CKE *client_key_exchange, CCS *change_cipher_spec);

which makes the epoch fields in all supplied record entities
symbolic, and assumes the negation of the epoch number
constraint defined in §III-A3. Note that we do not make fields
of Finished records symbolic for performance reasons similar
to those given in §IV-A. This step ends by executing the test
harness symbolically using KLEE.

D. Test Case Construction and Validation

During symbolic execution, for each path explored, KLEE
generates corresponding values for the symbolic variables.
These values are stored in separate files, with sequences leading
to errors named differently, making them easily distinguishable.
From these values and captured records, we build corresponding
test input records which we use to validate that the problem
exists (i.e., the handshake is completed) in the unmodified SUT.
Validation is done by supplying test input records over UDP
to client/server utilities provided with the implementation. For
most requirements, validation can be performed using the input
records generated via symbolic execution on a de-randomized
SUT without assertions and assumptions. This exposes bugs

in the same way as on the unmodified SUT, since the de-
randomization does not affect control flow. One exception
to when validation can be performed in this way is when it
requires some input records (e.g., Finished) to be constructed
from previous ones using cryptographic functions. For these
cases, we use existing DTLS libraries (TLS-Attacker [34] and
DTLS-Fuzzer [17]) to generate test cases which expose the
requirement violation.

V. EVALUATION

In parallel with extracting requirements for DTLS based on
its RFC and its errata, we looked for previously reported bugs
for DTLS implementations. We came across CVE-2014-0195,
an exploitable security vulnerability of OpenSSL, which is
explained in detail in this blog [38]. The bug is in OpenSSL’s
function for reassembling fragmented messages, and prompted
us to implement the Handshake layer requirements regarding
fragmentation (§III-B3 to §III-B6). One of the latest versions
with this vulnerability is OpenSSL 1.0.1f. So we took its
code and tested it. We were able to expose the vulnerability
very quickly. When using OpenSSL as a server, the bug,
which violates the Message Length requirement (§III-B6),
was detected in just 20 seconds, and when using OpenSSL
as a client in 38 seconds. In both cases, KLEE version 2.2
explored just eight paths in OpenSSL’s code. Out of curiosity,
we also checked the code of OpenSSL 1.0.1f for other
problems, and discovered, again in less than 20 seconds, two
minor non-conformance issues in its code. Both issues were
previously unknown and concern not checking the DTLS
version requirements (§III-A1 and §III-B7). This warm-up
experiment, and in particular exposing a (known but serious)
security vulnerability without much effort and very quickly,
convinced us of the power and promise of our methodology.
So we were eager to find out what we could discover in newer,
and hopefully more robust, DTLS implementations. We present
these results in the remainder of this section.

SUTs: For our evaluation, we chose a total of four
different DTLS implementations. Two of them, OpenSSL and
Mbed TLS, are well-known and widely used. For OpenSSL,
we used 3.0.0-alpha12, the most recent pre-release of version
3.0.0 at the time of our evaluation. For Mbed TLS, we used
version 2.22.0. The other two implementations are variants of
TinyDTLS, a lightweight DTLS implementation targeting IoT
devices. The first variant, which we will denote as TinyDTLSE ,
is hosted and maintained by the Eclipse IoT project. The second
variant, which we will denote as TinyDTLSC , was branched
out from Eclipse’s IoT project, developed independently ever
since, and is used in the Contiki-NG operating system. For
both TinyDTLS variants, we used the latest commits of their
development branches (7068882 and 53a0d97, respectively) at
the time our evaluation was conducted. Because the ‘develop’
branch of Eclipse’s TinyDTLS does not support Handshake
layer fragmentation, we used the most recent commit (94205ff)
of its ‘handshake_fragmentation’ branch to test TinyDTLSE’s
support for DTLS’s handshake fragmentation requirements.

https://securityintelligence.com/cve-2014-0195-adventures-in-openssls-dtls-fragmented-land/
https://github.com/openssl/openssl
https://github.com/ARMmbed/mbedtls
https://github.com/openssl/openssl/releases/tag/openssl-3.0.0-alpha12
https://github.com/ARMmbed/mbedtls/releases/tag/mbedtls-2.22.0
https://github.com/eclipse/tinydtls
https://github.com/contiki-ng/tinydtls
https://github.com/eclipse/tinydtls/commit/706888256c3e03d9fcf1ec37bb1dd6499213be3c
https://github.com/contiki-ng/tinydtls/commit/53a0d97da748a67093c49cb38744650c71d58c4d
https://github.com/eclipse/tinydtls/commit/94205ffb70885fb0929896af709514896d885997
https://github.com/eclipse/tinydtls/tree/feature/handshake_fragmentation

TABLE I: Number and classes of bugs found in the SUTs we used.

OpenSSL Mbed TLS TinyDTLSE TinyDTLSC

1.0.1f 3.0.0-alpha12 2.22.0 7068882 94205ff 53a0d97

Vulnerability 1 1 – 3 +0 2
Other – – – 3 +1 1
Non-conformance 2 2 3 9 +1 10

Summary of Results: Table I shows a breakdown of the
total of 36 bugs (not counting the three in OpenSSL 1.0.1f)
that we detected across the five SUTs that we consider in our
evaluation. In the table, we use the notation +N for the bugs
in the handshake fragmentation branch of TinyDTLSE to refer
to the additional bugs that this branch contains compared to
the develop branch (and so that we do not count the same bugs
twice). All these bugs have been reported to the developers of
these DTLS implementations, and most have been confirmed
and corrected by now. Also, note that we detected bugs in
all the DTLS implementations we considered. In Table I, we
classify these bugs into vulnerabilities, non-conformance issues,
and use “Other” for bugs that do not fall clearly into the other
two classes.

In the next two subsections, we describe the bugs that we
detected in OpenSSL and in Eclipse’s TinyDTLS implemen-
tation, and provide measurements about our experiments. We
omit detailed descriptions of the three non-conformance bugs
detected in Mbed TLS, and of the thirteen bugs detected in
TinyDTLSC because they are similar to those in TinyDTLSE .

A. Bugs in OpenSSL

On OpenSSL 3.0.0-alpha12, we detected a serious vulnera-
bility and a non-conformance bug (cf. Table I).

The vulnerability, which involves accessing an out-of-bounds
pointer and crashing the SUT, is detected in less than two
minutes both when using OpenSSL as a server and as a client
(cf. Tables II and III), with the help of the Handshake Type
requirement (§III-B1). The vulnerability has been reported to
the OpenSSL developers as issue 14906 and quickly fixed. It
occurs as follows: Under normal handshake, the client initiates
a handshake by sending a ClientHello0 (CH0) message to
the server. To trigger the vulnerability, the (malicious) client
instead starts the handshake by sending a CH0 message which
is however tagged with msg_type = finished. This fools the
server, which mistakenly tries to process a Finished message
and access the non-existing at this point cipher suite elements
(which would have been agreed by the client and the server
if the handshake had been properly done and the Finished
message would have been processed when its time had come).
This causes the server to crash. In a similar scenario, during a
handshake, if the server responds to a ClientHello message with
a Finished message, the client crashes for the same reason.
This is what the OpenSSL developers said about this bug:

“Good catch! Fortunately this only affects the dev branch and not 1.1.1
(otherwise this would have been a CVE).” We mention in passing
that the fix for this issue triggered a general discussion among
developers about revisiting how OpenSSL 3.0.0 manages
transcript hashes and that its state machine should be redesigned.

TABLE II: Results using the OpenSSL 3.0.0-alpha12 server instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 7 4 1m19s CH0, CH2, CKE, CCS
Record Length 492 1h56m01s CH0, CH2, CKE, CCS
Epoch Number 10 2m02s CH0, CH2, CKE, CCS
Record Sequence Number 74 21m05s CH2, CKE, CCS

Handshake Type 8 6 1m10s CH0, CH2, CKE
Message Sequence 8 1m18s CH0, CH2, CKE
Fragment Reassembly 51 4m46s CKE
Unfragmented Message Offset 3 59s CH0, CH2, CKE
Unfragmented Message Length ? 5579 � CH0, CH2, CKE
Message Sequence in Fragments 16 1m56s CKE
Handshake Version 7 8 1h18m36s CH0, CH2
Fragment Length 272 31m43s CH0, CH2, CKE
Cookie Length 182 40m13s CH0, CH2
Session ID Length 646 1h13m20s CH0, CH2

CH0/HVR Message Sequence 3 1m04s HVR
CH2/SH Message Sequence 4 1m13s SH

TABLE III: Results using OpenSSL 3.0.0-alpha12 client instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 7 5 1m47s HVR, SH, SHD, CCS
Record Length 259 29m18s HVR, SH, SHD, CCS
Epoch Number 10 2m28s HVR, SH, SHD, CCS
Record Sequence Number 210 1h23m41s HVR, SH, SHD, CCS

Handshake Type 8 18 1m58s HVR, SH, SHD
Message Sequence 19 1m58s HVR, SH, SHD
Fragment Reassembly 1076 2h22m21s SH
Unfragmented Message Offset 3 1m03s HVR, SH, SHD
Unfragmented Message Length ? 5499 � HVR, SH, SHD
Message Sequence in Fragments 23 2m26s SH
Handshake Version 7 6 43m49s HVR, SH
Fragment Length 112 10m28s HVR, SH, SHD
Cookie Length 21 6m34s HVR
Session ID Length 3 1m00s SH

This provides some evidence that the bugs exposed by our
methodology are often quite deep.

Besides this security bug, we also detected two non-
conformance bugs. The Record Version and the Handshake
Version requirements (§III-A1 and §III-B7) of the RFC revealed
that OpenSSL did not properly check for the version fields
when the underlined records in Tables II and III were processed.

Let us also describe the information in the tables of this and
the next subsection. Each of their rows shows the requirement
which is checked, whether it revealed a vulnerability (8), a non-
conformance bug (7) or was inconclusive (?) due to timeout (�),
the number of different paths that KLEE explored and the time
this required, and the shorthand for the participating records
of the DTLS protocol that the requirement involves. Records
that expose the bug(s) that were detected are shown in red
color (for vulnerabilities) or underlined (for non-conformances).
Regarding the time that symbolic execution requires, we notice
that most requirements are checked quite fast (in a few minutes
when testing OpenSSL 3.0.0-alpha12), but there also exist
requirements where KLEE needs to examine a significant
number of paths of the SUT and the tests take more than one
to two hours to complete or even time out after running for a
day. We also note that the time that checking the requirements
requires is not proportional to the number of execution paths
that KLEE explores; for example, notice the Handshake Version
rows in Tables II and III and contrast them with other rows
in these two tables. The Handshake Version experiment takes

https://github.com/openssl/openssl/issues/14906
https://github.com/openssl/openssl/pull/14930

considerably longer despite involving a relatively small number
of paths. This is due to the fact that unlike other tested
implementations, OpenSSL by default, computes the master
secret using a hash over the contents of prior messages. These
contents include symbolic fields (client_version in CH0 and
CH2), causing KLEE to symbolically execute complicated hash
code. On a general note, the experiments on OpenSSL 3.0.0-
alpha12 were by far the most time-consuming ones among the
DTLS implementations we tested.

B. Bugs in TinyDTLS

On the two TinyDTLSE branches we tested, we detected a
total of seventeen bugs. We omit the details of the ten non-
conformance bugs, and describe only the three vulnerabilities
and the four “Other” errors (cf. Table I).

The vulnerabilities we detected were reported as issues 59,
69, and 74. In short, they are as follows: (1) When a client
receives a ServerHello (SH) where the length field has a value
smaller than the actual size of the record, the variable that
represents the record size wraps around. Later this variable
is used to read the extensions contained in the SH, causing
the client to crash. (2) When a malformed ClientHello0 with
length = 0 is sent to the server, a size variable used when
the server is generating the cookie wraps around. This causes
the server to try to compute an HMAC over a large portion
of memory using the size variable, which in turn crashes the
server. (3) If a ClientHello2 message has an invalid value for
its version field, the server fails to retrieve the cookie from
the message. A flaw in the handling of this failure, in turn,
causes the server to proceed with the handshake. This makes
TinyDTLS servers susceptible to Denial-of-Service attacks.

The four “Other” bugs are also quite serious, but we do
not classify them as vulnerabilities because their consequences
are unclear; e.g., they do not cause crashes. They have been
reported as issues 54, 55, 57 and 70. In short, we have
detected: (1) A memory over-read when the client or the
server is reassembling a fragmented message, occurring if the
fragment_length is smaller than the size of the actual fragment.
(2) A client accessing an invalid memory past the boundary of
the fragment when the server sends a fragmented ServerHello to
the client where some of the handshake fields are not present in
the fragment. (3) An over-shift taking place when a client or a
server receives a record with a sequence_number greater than 32.
(4) Another memory over-read when a HelloVerifyRequest
contains a 16-byte cookie, but cookie_length is greater than 16.

It is interesting to point out that, for some of these bugs, it
took up to three pull request attempts before the root of the
problem was identified and fixed. Each time, we were able to
trigger the bug in another way and show to the developers that
their fixes were insufficient. The fact that we had an automatic
way to test the version of TinyDTLSE with the proposed fix
was very handy. Finally, note that testing TinyDTLS is very
fast for all but one requirement (Record Length); cf. the times
in Tables IV and V.

TABLE IV: Results using TinyDTLSE server instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 15 6s CH0, CH2, CKE, CCS
Record Length 33 19s CH0, CH2, CKE, CCS
Epoch Number 7 11 4s CH0, CH2, CKE, CCS
Record Sequence Number 7/8 12 3s CH2, CKE, CCS

Handshake Type 35 14s CH0, CH2, CKE
Message Sequence 7 11 11s CH0, CH2, CKE
Fragment Reassembly 8 300 1m05s CKE
Unfragmented Message Offset 7 1 5s CH0, CH2, CKE
Unfragmented Message Length 7/8 7 7s CH0, CH2, CKE
Message Sequence in Fragments 7 4 2s CKE
Handshake Version 8 2 12s CH0, CH2
Fragment Length 7/8 7 4s CH0, CH2, CKE
Cookie Length 8 6 8s CH0, CH2
Session ID Length 8 32 16s CH0, CH2

CH0/HVR Message Sequence 7 2 7s HVR
CH2/SH Message Sequence 7 3 9s SH

TABLE V: Results using TinyDTLSE client instance as SUT.

Requirement Bug Paths Time Participating Records

Record Version 65 34s HVR, SH, SHD, CCS
Record Length 8 112 2h06m13s HVR, SH, SHD, CCS
Epoch Number 21 6s HVR, SH, SHD, CCS
Record Sequence Number 7/8 146 58s HVR, SH, SHD, CCS

Handshake Type 8 256 1m36s HVR, SH, SHD
Message Sequence 7 23 15s HVR, SH, SHD
Fragment Reassembly 8 726 2m55s SH
Unfragmented Message Offset 7 1 2s HVR, SH, SHD
Unfragmented Message Length 7 1 2s HVR, SH, SHD
Message Sequence in Fragments 7 4 2s SH
Handshake Version 7 2 3s HVR, SH
Fragment Length 7 1 2s HVR, SH, SHD
Cookie Length 8 18 19s HVR
Session ID Length 8 4 7s SH

VI. RELATED WORK

Symbolic execution [19] was introduced already in the 70’s.
In the last 15 years, improvements in tool implementations [7],
[12] have made symbolic execution a powerful software testing
technique. For testing network protocols, several works (e.g.,
KleeNet [29], SymNet [28], etc.), search for issues arising
during the joint execution of several protocol parties combined
with a test environment. Symbolic execution is employed to
explore as many code paths as possible within some time budget.
Since each input is generated by another party, these approaches
mainly detect interoperability issues, and have limited power
to detect flaws in processing of adversarial (non-valid) inputs.

SYMBEXNET [32] jointly executes the protocol parties
symbolically to generate test inputs that explore as many
code paths as possible in a given time budget. The gener-
ated test inputs are then replayed against the SUT, while
monitoring its behavior to check whether any requirement
extracted from the specification is violated. In contrast to
our approach, SYMBEXNET symbolically executes the SUT
without first augmenting it with assumptions or assertions that
check for requirement violations. As a consequence, it may
miss violations corresponding to paths which are exercised
by both violating and non-violating inputs. To understand
why, consider the Handshake Version requirement (§III-B7),
which constrains the client_version field to a value in the set
{DTLS1.0, DTLS1.2}. MbedTLS checks this requirement incorrectly;

https://github.com/eclipse/tinydtls/issues/59
https://github.com/eclipse/tinydtls/issues/69
https://github.com/eclipse/tinydtls/issues/74
https://github.com/eclipse/tinydtls/issues/54
https://github.com/eclipse/tinydtls/issues/55
https://github.com/eclipse/tinydtls/issues/57
https://github.com/eclipse/tinydtls/issues/70

it checks whether client_version is in a range which also
includes the invalid version DTLS1.1. As a result, the same
code path can be exercised by both valid and invalid version
fields. For such a path, symbolic execution without inserted
assumptions will generate a single test case which may
or may not expose the bug (i.e. it may or may not have
client_version set to DTLS1.1). In contrast, the assumptions used
in our approach specifically address this, guiding symbolic
execution to generate test cases that expose violations whenever
possible. Similar examples include the missing checks for
Message Offset/Length (§III-B4), Fragment Length, and Epoch
(§III-A3) in TinyDTLS. To validate whether symbolic execution
unguided by assumptions as used in SYMBEXNET could indeed
miss such bugs, we symbolically executed MbedTLS and
TinyDTLS without any assumptions or assertions. In all cases,
none of the generated test inputs exposed the corresponding
requirement violation.

Pedrosa et al. [24] use symbolic execution to search for
interoperability issues by characterizing messages that during a
session can be sent by one party but rejected as non-compliant
by the other. Wen et al. [37] apply symbolic execution to
stateful protocol implementations by first employing model
learning (L∗) to extract a finite state machine, whose states can
be considered as an additional input in symbolic execution.

Chau et al. [9], [10] use symbolic execution for a form
of differential testing of libraries that classify certificate
chains as valid or invalid. Using symbolic execution, path
constraints for the “valid” and “invalid” outcomes are generated.
Path constraints from different implementations are compared,
and discrepancies are investigated. This approach is suitable
for libraries that implement an input-output function for
which requirements are difficult to formalize precisely. In
our approach, we can formalize and check each requirement
individually: violations can detected and diagnosed directly
when they occur, and there is no need to compare potentially
complex test data from different implementations.

Chen et al. [11] automate the extraction of requirements
from the X.509 RFC [4] by extracting sentences with keywords,
such as “MUST”, “SHOULD”, etc. From each requirement,
“valid” and “invalid” field values are constructed, with manual
assistance. These are combined into a compact test suite, which
is then used in differential black-box testing. As we have noted
in §II, in the case of DTLS, some requirements are clarified
and/or corrected in errata, which are documents distinct from
the protocol’s RFC. It is unclear how requirement extraction
can be automated in such a setting.

There is a rich body of work on protocol conformance testing,
with model-based testing (MBT) [6], [35] and property-based
testing (PBT) [1], [20], [21] as closely related approaches.
An abstract model of the protocol is manually constructed or
learned [33], and is used as basis for generating test inputs
that are supplied, typically in black-box testing. Many different
formalisms for expressing abstract models and specifications
have been suggested [22], [36]. PBT is often simpler to perform
than MBT, due to the high-level infrastructure and built-in
mechanisms for input generation that PBT tools provide. Our

approach is white-box, which gives more power to the search
for specific inputs and code paths that expose bugs.

State fuzzing is a black-box technique for detecting flaws in
the control logic for handling the order of packets. Such flaws
may be exploited, e.g., by tricking an implementation to bypass
an authentication step. State fuzzing has discovered several
flaws in TLS and DTLS implementations [3], [13], [16], [31].
It can be regarded as complementary to our approach in that
it tests different orderings of packet types, whereas we search
for requirement violations and bugs in handling packet fields
under a specific ordering.

VII. REFLECTIONS AND CONCLUDING REMARKS

In this paper, we have described a test methodology and
presented our experiences from using symbolic execution to
detect specification violations and security vulnerabilities in
implementations of the DTLS network protocol. A central
idea in our methodology is to formulate requirements over the
processing of packets in a session and let these requirements
guide the symbolic execution to search for code paths and
corresponding sequences of inputs that expose requirement
violations. This allows testing the SUT with a broad range of
input sequences, both benign and adversarial.

When testing a code base of significant size and complexity,
a challenge for all techniques based on symbolic execution, and
to those using KLEE in particular, is scalability. Our experience
is that one effective way to achieve scalability is to test for
violation of only one requirement at a time, and to make
symbolic only the parts of the input that are relevant for the
tested requirement. Naturally, this requires attentiveness, and
has the drawback that it can miss inputs that can be produced
only when multiple requirements are in effect.

If the speed of symbolic execution is slow due to some
easily identifiable reason (e.g., the execution of cryptographic
functions), one can try to find a way to keep away from such
trouble when the requirement to check does not depend on
the functionality of the corresponding code. This is what we
described in §IV-B: we focused on handshakes with a pre-
shared key (PSK) instead of testing the DTLS implementations
using handshakes based on more complicated encryption
algorithms. Of course, a downside is that testing will not
detect bugs in the code which is not executed; it will only
check violations of specification requirements.

When testing several implementations of the same protocol,
significant effort can be saved by packaging as much reusable
functionality as possible into a shared library, as we describe
in §IV-C. By making the different implementations take input
with a common structure, as we did for DTLS records, many
operations on input data, such as making parts of input symbolic
and adding assumptions corresponding to requirements, can be
implemented in such a shared library.

We have evaluated our methodology by checking four widely-
used DTLS implementations against the RFC for DTLS. We
were able to quickly expose a known CVE in an older version
of OpenSSL, and discover numerous new vulnerabilities, non-
conformance issues and subtle errors in all implementations.

REFERENCES

[1] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing telecoms
software with Quviq QuickCheck,” in Proceedings of the 2006 ACM
SIGPLAN Workshop on Erlang. New York, NY, USA: ACM, 2006, pp.
2–10. [Online]. Available: http://doi.acm.org/10.1145/1159789.1159792

[2] H. Asadian, P. Fiterău-Broştean, B. Jonsson, and K. Sagonas, “Replication
material for the ICST 2022 paper: Applying symbolic execution to test
implementations of a network protocol against its specification,” Apr.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.5929867

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A
messy state of the union: Taming the composite state machines of
TLS,” Commun. ACM, vol. 60, no. 2, pp. 99–107, Feb. 2017. [Online].
Available: https://doi.org/10.1145/3023357

[4] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, May 2008. [Online].
Available: https://rfc-editor.org/rfc/rfc5280.txt

[5] S. Bradner, “Key words for use in RFCs to Indicate Requirement
Levels,” RFC 2119, Mar. 1997. [Online]. Available: https://www.rfc-
editor.org/info/rfc2119

[6] M. Broy, B. Jonsson, J. Katoen, M. Leucker, and A. Pretschner,
Eds., Model-Based Testing of Reactive Systems, Advanced Lectures,
ser. LNCS, vol. 3472. Springer, 2005. [Online]. Available: https:
//doi.org/10.1007/b137241

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[8] M. M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed
101,” IEEE Secur. Priv., vol. 12, no. 4, pp. 63–67, 2014. [Online].
Available: https://doi.org/10.1109/MSP.2014.66

[9] S. Y. Chau, O. Chowdhury, M. E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru,
and N. Li, “SymCerts: Practical symbolic execution for exposing
noncompliance in X.509 certificate validation implementations,” in
2017 IEEE Symposium on Security and Privacy, ser. SP 2017. IEEE
Computer Society, May 2017, pp. 503–520. [Online]. Available:
https://doi.org/10.1109/SP.2017.40

[10] S. Y. Chau, M. Yahyazadeh, O. Chowdhury, A. Kate, and
N. Li, “Analyzing semantic correctness with symbolic execution:
A case study on PKCS#1 v1.5 signature verification,” in 26th
Annual Network and Distributed System Security Symposium,
ser. NDSS 2019. The Internet Society, Feb. 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/analyzing-
semantic-correctness-with-symbolic-execution-a-case-study-on-pkcs1-
v1-5-signature-verification/

[11] C. Chen, C. Tian, Z. Duan, and L. Zhao, “RFC-directed differential
testing of certificate validation in SSL/TLS implementations,” in
Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, May–Jun. 2018, pp. 859–870. [Online].
Available: https://doi.org/10.1145/3180155.3180226

[12] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform:
Design, implementation, and applications,” ACM Trans. Comput.
Syst., vol. 30, no. 1, pp. 2:1–2:49, 2012. [Online]. Available:
https://doi.org/10.1145/2110356.2110358

[13] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implementations,”
in 24th USENIX Security Symposium. USENIX Association, Aug. 2015,
pp. 193–206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter

[14] T. Dierks and E. Rescorla, “The transport layer security (TLS) protocol
version 1.1,” RFC 4346, Internet Engineering Task Force, Apr. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4346.txt

[15] ——, “The transport layer security TLS protocol version 1.2,” RFC 5246,
Aug. 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5246.txt

[16] P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas,
and J. Somorovsky, “Analysis of DTLS implementations using
protocol state fuzzing,” in 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 2523–2540.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/fiterau-brostean

[17] P. Fiterău-Broştean, B. Jonsson, K. Sagonas, and F. Tåquist, “DTLS-
Fuzzer: A DTLS protocol state fuzzer,” in 15th IEEE International
Conference on Software Testing, Verification and Validation, ser. ICST
2022. IEEE Computer Society, Apr. 2022.

[18] F. Foerg, “Fuzzing the Mbed TLS library,” Sep. 2015. [Online].
Available: https://blog.gdssecurity.com/labs/2015/9/21/fuzzing-the-mbed-
tls-library.html

[19] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online]. Available:
https://doi.org/10.1145/360248.360252

[20] A. Löscher and K. Sagonas, “Targeted property-based testing,” in
Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: ACM, 2017, pp. 46–56. [Online]. Available:
http://doi.acm.org/10.1145/3092703.3092711

[21] A. Löscher, K. Sagonas, and T. Voigt, “Property-based testing
of sensor networks,” in Sensing, Communication, and Networking,
12th Annual IEEE International Conference on, ser. SECON
’15. IEEE, Jun. 2015, pp. 100–108. [Online]. Available: https:
//doi.org/10.1109/SAHCN.2015.7338296

[22] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM 2019. ACM, Sep. 2019, pp. 227–240.
[Online]. Available: https://doi.org/10.1145/3341302.3342087

[23] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites:
exploiting the SSL 3.0 fallback,” 2014. [Online]. Available: https:
//www.openssl.org/~bodo/ssl-poodle.pdf

[24] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan, and T. D.
Millstein, “Analyzing protocol implementations for interoperability,”
in 12th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI 15. USENIX Association, May 2015, pp.
485–498. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pedrosa

[25] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNET: A
greybox fuzzer for network protocols,” in IEEE 13th International
Conference on Software Testing, Validation and Verification, ser.
ICST 2020. IEEE, Oct. 2020, pp. 460–465. [Online]. Available:
https://ieeexplore.ieee.org/document/9159093

[26] E. Rescorla and N. Modadugu, “Datagram transport layer security,” RFC
4347, Internet Engineering Task Force, Apr. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4347.txt

[27] ——, “Datagram transport layer security version 1.2,” RFC 6347,
pp. 1–32, Jan. 2012. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6347.txt

[28] R. Sasnauskas, P. Kaiser, R. L. Jukic, and K. Wehrle, “Integration testing
of protocol implementations using symbolic distributed execution,” in
20th IEEE International Conference on Network Protocols, ser. ICNP
2012. IEEE Computer Society, Oct.-Nov. 2012, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICNP.2012.6459940

[29] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski,
and K. Wehrle, “KleeNet: discovering insidious interaction bugs
in wireless sensor networks before deployment,” in Proceedings
of the 9th International Conference on Information Processing in
Sensor Networks, ser. IPSN 2010, T. F. Abdelzaher, T. Voigt, and
A. Wolisz, Eds. ACM, Apr. 2010, pp. 186–196. [Online]. Available:
https://doi.org/10.1145/1791212.1791235

[30] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7252.txt

[31] J. Somorovsky, “Systematic fuzzing and testing of TLS libraries,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1492–1504. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978411

[32] J. Song, C. Cadar, and P. R. Pietzuch, “SYMBEXNET: Testing network
protocol implementations with symbolic execution and rule-based
specifications,” IEEE Trans. Software Eng., vol. 40, no. 7, pp. 695–709,
2014. [Online]. Available: https://doi.org/10.1109/TSE.2014.2323977

[33] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-based testing
IoT communication via active automata learning,” in Software Testing,
Verification and Validation, (ICST) 2017 IEEE International Conference
on. IEEE Computer Society, Mar. 2017, pp. 276–287. [Online].
Available: https://doi.org/10.1109/ICST.2017.32

http://doi.acm.org/10.1145/1159789.1159792
https://doi.org/10.5281/zenodo.5929867
https://doi.org/10.1145/3023357
https://rfc-editor.org/rfc/rfc5280.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://doi.org/10.1007/b137241
https://doi.org/10.1007/b137241
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1109/MSP.2014.66
https://doi.org/10.1109/SP.2017.40
https://www.ndss-symposium.org/ndss-paper/analyzing-semantic-correctness-with-symbolic-execution-a-case-study-on-pkcs1-v1-5-signature-verification/
https://www.ndss-symposium.org/ndss-paper/analyzing-semantic-correctness-with-symbolic-execution-a-case-study-on-pkcs1-v1-5-signature-verification/
https://www.ndss-symposium.org/ndss-paper/analyzing-semantic-correctness-with-symbolic-execution-a-case-study-on-pkcs1-v1-5-signature-verification/
https://doi.org/10.1145/3180155.3180226
https://doi.org/10.1145/2110356.2110358
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
http://www.ietf.org/rfc/rfc4346.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://blog.gdssecurity.com/labs/2015/9/21/fuzzing-the-mbed-tls-library.html
https://blog.gdssecurity.com/labs/2015/9/21/fuzzing-the-mbed-tls-library.html
https://doi.org/10.1145/360248.360252
http://doi.acm.org/10.1145/3092703.3092711
https://doi.org/10.1109/SAHCN.2015.7338296
https://doi.org/10.1109/SAHCN.2015.7338296
https://doi.org/10.1145/3341302.3342087
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa
https://ieeexplore.ieee.org/document/9159093
http://www.ietf.org/rfc/rfc4347.txt
http://www.rfc-editor.org/rfc/rfc6347.txt
http://www.rfc-editor.org/rfc/rfc6347.txt
https://doi.org/10.1109/ICNP.2012.6459940
https://doi.org/10.1145/1791212.1791235
https://rfc-editor.org/rfc/rfc7252.txt
http://doi.acm.org/10.1145/2976749.2978411
http://doi.acm.org/10.1145/2976749.2978411
https://doi.org/10.1109/TSE.2014.2323977
https://doi.org/10.1109/ICST.2017.32

[34] “TLS-Attacker,” https://github.com/tls-attacker/TLS-Attacker, Online;
accessed 12-December-2021.

[35] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools
Approach, 1st ed. Morgan Kaufmann, Nov. 2006. [Online]. Available:
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011

[36] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, “Model-based testing of object-oriented reactive systems
with Spec Explorer,” in Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, ser. LNCS, R. M. Hierons,
J. P. Bowen, and M. Harman, Eds., vol. 4949. Springer, 2008, pp. 39–76.

[Online]. Available: https://doi.org/10.1007/978-3-540-78917-8_2
[37] S. Wen, Q. Meng, C. Feng, and C. Tang, “A model-guided

symbolic execution approach for network protocol implementations and
vulnerability detection,” PloS one, vol. 12, no. 11, p. e0188229, 2017.
[Online]. Available: https://doi.org/10.1371/journal.pone.0188229

[38] M. Yason, “CVE-2014-0195: Adventures in OpenSSL’s DTLS frag-
mented land,” Dec. 2014. [Online]. Available: https://securityintelligence.
com/cve-2014-0195-adventures-in-openssls-dtls-fragmented-land/

[39] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/,
2013.

https://github.com/tls-attacker/TLS-Attacker
http://www.elsevierdirect.com/product.jsp?isbn=9780123725011
https://doi.org/10.1007/978-3-540-78917-8_2
https://doi.org/10.1371/journal.pone.0188229
https://securityintelligence.com/cve-2014-0195-adventures-in-openssls-dtls-fragmented-land/
https://securityintelligence.com/cve-2014-0195-adventures-in-openssls-dtls-fragmented-land/
http://lcamtuf.coredump.cx/afl/

	Introduction
	Overview of our Methodology
	Extracting Specification Requirements
	Symbolic Execution
	Test Case Construction and Validation

	DTLS and its Specification Requirements
	Record Layer Requirements
	Record Version
	Record Length
	Epoch Number
	Record Sequence Number

	Handshake Layer Requirements
	Handshake Type
	Message Sequence
	Fragment Reassembly
	Unfragmented Message Offset / Length
	Message Sequence in Fragments
	Message Length in Fragments
	Handshake Version
	Requirements on Length of Fields

	Implementation
	SUT Preparation
	Record Capture
	Symbolic Execution
	Test Case Construction and Validation

	Evaluation
	Bugs in OpenSSL
	Bugs in TinyDTLS

	Related Work
	Reflections and Concluding Remarks
	References

