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1 Introduction

Background The Internet of Things (IoT) is now
becoming an integrated part of our society’s infras-
tructure. The IoT includes a large number of small
embedded devices that are connected to each other
and the internet. IoT devices act as the interface
between the physical and the digital world, enabling
real-time insights into physical world dynamics. IoT
systems are being deployed in a range of applica-
tion domains, including factories, hospitals, as well
as smart buildings and homes. Swedish industry
and research has played a leading role in this de-
velopment: IoT technology is an important offering
of many Swedish companies, and several key tech-
nologies, such as Contiki, have a leading role in IoT
system development.

As we become increasingly reliant on IoT sys-
tems to perform critical functions, it becomes ap-
parent that security and safety concerns must be
taken seriously. Compromised or faulty devices and
systems can cause catastrophic damage to individ-
uals, companies, and the society. IoT devices can
be targeted by exploits that steal sensitive informa-
tion and perform coordinated attacks. A number of
such attacks has already occurred, including “Mi-
rai”, “Linux.Darlloz” and “Zigbee War-flying”, and
their number will certainly continue to increase with
the deployment of new IoT systems (cf. Figure 1).

For mainstream computing systems, software se-
curity mechanisms are being developed and de-
ployed since many years. Examples include tech-
niques for preventing and detecting vulnerabilities
in software [10, 16], techniques for detecting and
mitigating malicious code, etc. Small embedded IoT
devices, however, feature peculiar characteristics
that render these techniques difficult to apply:

1. Software for IoT devices is chiefly designed to
cope with constrained memory, power, process-
ing, and bandwidth resources. This prevents de-
velopers from using sophisticated mechanisms
for monitoring and intrusion detection; it also en-
courages programmers to produce highly opti-
mized code, which is more susceptible to exhibit
security bugs and makes their detection more
difficult.

2. Software for IoT devices often has device-specific
constructs, e.g., for accessing resources such

Figure 1: Progression of botnet activity originating
from IoT devices, as recorded by AT&T over the past
years (from https://www.business.att.com/

cybersecurity/cybersecurity-innovation/).

as sensors, which are not handled by existing
techniques for security analysis, and which vary
between different devices.

3. Operating systems for IoT devices rarely pro-
vide features, such as memory protection and
run-time component replacement [17, 14]. This
makes it harder to prevent security breaches and
limit their effect, and also entails that security
patches must replace the whole binary image on
a device, causing undesirable down-time.

Challenge The existing software infrastructure for
IoT represents an impressive effort to equip small
devices with advanced functionality. Now that the
IoT revolution is here, society and industry face the
challenge to use this software basis for building sys-
tems with the highest levels of security and safety.
Goal The goal of aSSIsT is to enable IoT system de-
velopers to meet this challenge, by providing them
with powerful techniques that can detect and re-
move security vulnerabilities in software, ensure
that security protocols provide guaranteed function-
ality, which prevent, detect, and mitigate intrusions
when they occur. These techniques must further-
more be integrated in existing development pro-
cess for IoT systems, by automating them and by
focusing on low-power, battery-operated wireless
devices, such as those found in IoT systems.
aSSIsT in a Nutshell aSSIsT will achieve these
goals by advancing the state-of-the-art in security
for small embedded devices, matching the above
characteristics (1–3), along three complementary di-
rections:(i) automated software analysis techniques
will detect security problems in software, and guar-
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antee their absence for specific components, (ii) au-
tomated testing techniques will check correctness
of implementations of security services, and (iii) run-
time protection mechanisms will provide safeguards
so as to isolate software modules, detect and miti-
gate attacks, should attacks occur that could not be
detected with other means.

2 Approach

aSSIsT will achieve its goals by advancing the stat-
of-the-art along three directions of crucial impor-
tance for security of software, while also considering
the specific characteristics (1–3) of IoT systems.
Analysis of Security of Software: aSSIsT will de-
velop powerful techniques for analyzing software for
IoT devices in order to detect security bugs, a.k.a.
vulnerabilities, including buffer overflows, memory
safety errors, information leakage, run-time errors,
authentication bypasses, etc. We will leverage
on the recent development of dynamic symbolic
analysis techniques, which have been successfully
used in automated analysis of security properties
for mainstream computing systems (e.g., [22]), in
order to develop such techniques for IoT software.
For this, we must overcome key challenges, includ-
ing taking into account specific peculiarities of IoT
device platforms, handling complex software fea-
tures such as interrupts, and developing techniques
that allow dynamic analysis to provide guarantees
of correctness for specific software components.
Testing & Verification of Protocol Implementations:
aSSIsT will develop techniques for efficient auto-
mated testing of protocol implementations, in partic-
ular for ensuring that they provide security services
such as authentication, secrecy, etc. We will build
on recent advancements on automated techniques
for testing implementations of key communication
protocols [13, 27], and will leverage on our recent
advances on techniques for directing automated
testing [19] to search for violations of specific cor-
rectness properties. We will improve the power of
such techniques so that they can provide security
guarantees for IoT protocol implementations.
Run-time Protection Mechanisms: aSSIsT will de-
sign tools, compiler techniques, and run-time func-
tionality that make it harder for attackers to com-
promise IoT devices, even if they manage to gain
access in unintended ways, and for detecting and
mitigating successful attacks. Such functionality
includes component isolation, which limits the dam-
age that can be incurred by intruders, and tech-
niques for diversification of device software, e.g.,
by memory randomization, so that an attacker who
finds a method for intrusion into one device cannot
use the same method for the other ones. We will
also contribute monitoring solutions based on an

embedded supervisor and advanced event analy-
sis. Only few efforts currently exist in this area, as
one must overcome several challenges specific to
IoT devices, including the lack of advanced mecha-
nisms for managing memory, such as MMUs (mem-
ory management units), in addition to power and
memory constraints. Such isolation will also help
protect verified components in a code base from
interference from untrusted parts, and will enable
modular verification of software components.

The above directions of advancements are
closely interlinked. Software analysis techniques
will work in tandem with protocol testing: testing
will check requirements whereas software analysis
can provide coverage guarantees and direct testing
towards potentially unsafe scenarios. Software anal-
ysis will assist in providing component isolation, by
analyzing memory usage of concerned component;
in return, component isolation will support modular
analysis of individual software components.

Demonstrators Techniques developed by aSSIsT
will be usable for any C-based software for IoT. We
will demonstrate them through three demonstrators:

• Contiki, which is the leading open-source OS for
IoT devices, and has a wide industry adoption,

• DTLS and TSCH are two of the most important
protocols in the network stack for IoT.

Given their wide industry adoption, these demon-
strators will showcase the application of aSSIsT
techniques, thereby ensuring rapid industry uptake.

On the Scope of aSSIsT IoT system security must
be approached with a holistic perspective, including
physical threats to its components, management
of access rights, etc. aSSIsT focuses on security
mechanisms that can be mitigated on the software
level. It can be argued that software vulnerabilities
are the most important security threats, since unde-
tected intrusions can cause potentially catastrophic
harm to networks and also to entire society infras-
tructures; hence their detection and removal should
be of utmost importance to any organization.

aSSIsT further aims to provide automated tech-
niques that can be fitted into existing development
flows in the IoT domain. There have been efforts
to develop a software basis for IoT devices using
“safe” programming languages, that support the pro-
vision of security guarantees, e.g., TinyOS, but so
far this has not succeed in equipping small devices
with sufficiently powerful IP-connectivity. Another,
more drastic approach, would be to develop a soft-
ware basis, including embedded OSes and network
stacks, using techniques from the safety-critical do-
main, including similar procedures as in avionics, or
supported by interactive theorem provers. However,
this would be very costly, would take several years
to become mature, and may result in a software
basis which cannot be adapted to upcoming needs.
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Relation to SSF call The proposed project ad-
dresses a core topic of the SSF call, which (in
Section “Background”) describes the security chal-
lenges that arise when traditional “best-effort” de-
signs must scale to the needs of the digital soci-
ety. The SSF call mentions “anomaly detection and
mitigation of security vulnerabilities” as key topics.
These are central concerns of aSSIsT, for the exist-
ing IoT software infrastructure. Moreover, aSSIsT
techniques will be automated, and can thereby be
adopted into existing development processes. Be-
yond IoT systems, the developed technologies will
also be applicable in any sector where protocol cor-
rectness and software vulnerabilities are important,
such as network servers, software for the powergrid,
medical cyber-physical systems, etc.

3 Planned Work

WP1: Analysis of Security of Software
(B. Jonsson, K. Sagonas, S. Duquennoy)

IoT devices typically have a large attack surface,
consisting of a wireless interface, and possibly inter-
faces for reboot and maintenance. Because of their
mission-critical role, it is important to ensure the
absence of security vulnerabilities that can make
devices susceptible to buffer overflow attacks, au-
thentication bypasses, etc., when exposed to some
unexpected combination of inputs and environment
events. The goal of WP1 is to develop techniques
for detecting such problems, and if possible guaran-
tee their absence, that are automated in order to fit
into development processes for IoT systems.

For mainstream computing systems, the currently
most powerful automated techniques for vulnerabil-
ity detection are based on dynamic symbolic exe-
cution and various further developments, including
concolic testing [24] and veritesting [4]. These tech-
niques extend dynamic execution techniques by
instrumentation that allows to systematically gener-
ate inputs that exercise a high percentage of feasi-
ble execution paths of the program code, while at
the same time checking security properties using
a dedicated runtime checker. For servers and PC-
based systems, such security analysis techniques
are now the most powerful ones used at, e.g., Mi-
crosoft [16, 23]. Tools based on similar technology
achieved the top places in 2016 at DARPA’s presti-
gious “cyber grand challenge” [10].

State of the Art Efforts to analyze software on
small devices include FIE [12], which uses the sym-
bolic execution engine KLEE [8] to find vulnerabili-
ties in small embedded firmwares executing on the
MSP430 family of micro-controllers. It achieved
high coverage on small firmwares, but had signif-
icant problems to deal with larger codes, such as

in Contiki. It is also not able to consider interrupts
and event-driven execution in an efficient manner. A
previous Contiki verification effort [28], using CBMC,
did not manage to achieve high coverage.
Approach Our departure point is symbolic and con-
colic execution techniques as found, e.g., in the tool
FIE [12] and in our own tool CUTER [15], for con-
colic testing of Erlang programs. We will develop
such technology into powerful techniques for auto-
mated analysis of security properties of actual IoT
device software. For this, we must overcome key
challenges, including (i) software that is specialized
for a small platform, having specific interactions with
peripherals, (ii) the potential explosion in program
paths incurred by frequent occurrence of interrupts,
and possibly custom thread models, and (iii) design-
ing techniques that provide security guarantees for
key software components.
Task 1.1: Handling Device Platform Characteris-
tics IoT device software includes platform specific
constructs, e.g., for accessing peripherals, network
interfaces, etc. These moves execution outside the
domain of the standard C language, and can not
be handled by plain symbolic analysis techniques.
We will address this challenge by a combination
of several techniques.(i) We will combine symbolic
analysis with concrete test executions on a platform
emulator. (ii) We will develop support for a user
or device provider to model accesses to peripher-
als, such as reading sensor data from a designated
memory location, within the C language in a struc-
tured way; this allows to apply the power of sym-
bolic analysis. (iii) Leveraging our past work on
model learning [9], we will develop learning tech-
niques for inferring models of peripheral behavior by
repeated test runs. The techniques will be demon-
strated by providing support for analyzing software
on the ARM Cortex M3, which is one of the most
widespread platforms for IoT, and for which support
will soon be available in the COOJA simulator.
Task 1.2: Handling Interrupts and Threading IoT
device platforms typically coordinate I/O and over-
lapping activities by interrupts. Unfortunately, a
faithful representation of interrupts may cause an
explosion in the number of program paths that must
be considered. An analogous challenge stems from
various event- or thread-based execution models
in embedded OSes. We will address these chal-
lenges, inspired by our recent advances in reduction
techniques for multithreaded programs [2], which
limit the analysis to a small number of represen-
tative paths, while still guaranteeing coverage of
all paths. The result will allow complete handling
of interrupts and event-driven execution with only
modest overhead on the software analysis.
Task 1.3: Complete Analysis of Software Com-
ponents For realistic software systems, symbolic-
execution based verification techniques typically are
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not able to analyze all possible execution paths,
and consequently cannot give absolute guarantees
about the absence of security bugs. We will develop
approaches by which such guarantees can be given
for modest-size components of the software on an
IoT device. This will be done by augmenting sym-
bolic execution with extrapolation techniques that
can generalize the analysis of a small number of ex-
ecution paths to a whole class of paths. Instances
of this idea have appeared in some works, e.g.,
memory smudging [12], which we will generalize
to become broadly applicable. We will apply these
techniques to central components of an IoT OS. For
instance, for Contiki, we will focus on its scheduler
and memory allocator, so as to provide a verified
trusted computing base. At run-time, we leverage
on the protection mechanisms from WP3 to isolate
the trusted base and components from untrusted
code. This will allow other Contiki components, e.g.,
those involved in specific security protocols, to be
verified in a modular manner.

WP2: Testing & Verification of Protocol
Implementations (K. Sagonas, B. Jonsson,
L. Mottola)

Designing and implementing secure communication
protocols is an exceptionally hard problem. In the
context of TLS alone, the Transport Layer Security
protocol which is the de facto protocol standard for
secured Internet and mobile applications, a number
of attacks have been discovered in the recent years.
They range from cryptographic attacks (e.g., prob-
lems when using RC4 and attacks such as FREAK),
to serious implementation bugs such as Heartbleed,
to timing attacks (e.g., Lucky Thirteen [3] and varia-
tions of Bleichenbacher attacks [27]).

Attacks against communication protocols specific
to IoT systems are less studied. In addition to be-
ing susceptible to most security threats against the
TCP/IP stack in a wired network, an IP-based IoT
network possesses a number of additional vulner-
abilities (e.g., wireless medium unreliability, spec-
trum use, power management, limited bandwidth,
etc.), and involves dealing with network and physi-
cal layer issues, which make IoT-specific protocols
more challenging to test and verify.
State of the Art For TCP/IP-based protocols, the
large number of recent attacks has motivated re-
searchers to provide further security analyses of
protocols and incorporate them in tools. In recent
scientific studies, authors have considered testing
and verification of TLS state machines [6], have de-
veloped tools for testing protocol security properties
when messages are sent in arbitrary orders, and
even tools for modifying specific message fields [7].

Techniques like protocol state fuzzing [13] and
systematic fuzzing [27] have also been considered

recently. Many such techniques also involve a learn-
ing component that learns the states of the protocol
or the format of messages to make the fuzzing pro-
cess more powerful and automatic. Still, relatively
little attention has been paid to security breaches
that are specific to IoT systems and to protocols
that are implemented using UDP instead of TCP.
Approach We will further develop lightweight black-
box techniques for testing correctness and security
properties of IoT protocol implementations. We
have developed techniques for property-based test-
ing (PBT) of sensor networks [20], support for test-
ing to take place in COOJA (a cross-level sensor net-
work simulator for Contiki-based IoT systems), and
recently a general framework for targeted property-
based testing [19], a powerful testing technique that
extends the generation component of a PBT tool
with a search-based testing component, thereby
combining the advantages of the two techniques
and allowing the testing process to be faster and
significantly more effective. Most notably, it frees
the developer from the burden of having to manually
write generators tailored to each individual property.

We have already applied targeted PBT not only
to test correctness but also non-functional proper-
ties (e.g., energy consumption), the technique is
currently restricted only to situations where the unit
under test is stateless and the property of inter-
est involves a single IoT node rather than a whole
network configuration.
Task 2.1: Targeted Property-Based Testing We
will first extend targeted PBT to also work in situa-
tions where network-wide and/or stateful testing of
IoT protocol implementations is needed. The latter
mechanism is required for testing network security
protocols, such as TLS or DTLS, which typically
implement a state machine with different states for
establishing connections. In doing so, we also plan
to explore the applicability of domain-specific state
abstraction techniques that project partners devised
earlier for both the IoT [21] and other domains [5].
Task 2.2: Systematic Fuzzing Once the mecha-
nisms for stateful testing are in place, the second
task is to employ them to perform property-based
systematic fuzzing of IoT protocols. We will address
the challenge to learn relatively accurate state ma-
chine models of implementations of complex IoT
protocols, such as DTLS, leveraging partners pre-
vious work on state machine learning [9]. We can
thereafter address the challenge how to appropri-
ately fuzz the state machine model, using search-
based techniques, in order to discover violations of
security properties effectively.
Task 2.3: Verification via Compositional Test-
ing We will employ techniques such as (state-
less) model checking and compositional testing to
IoT protocol implementations, so that we provide
stronger guarantees than property-based testing
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and systematic fuzzing can give us. The goal here is
to be able to verify that implementations indeed pre-
serve important properties of their protocols, such
as conformance to their standard. In this task, we
plan to leverage on the fact that central components
of the IoT system software will have already been
completely analyzed by Task 1.3, which will allow
us to employ a modular approach to verification via
compositional testing techniques.

WP3: Run-time Protection Mechanisms
(S. Duquennoy, S. Raza, L. Mottola)

Because of size, cost, and energy constraints, IoT
systems rarely provide advanced functionality to
ensure the dependable operation of software com-
ponents. Example of these are hardware Memory
Management Units (MMUs, available on computer
CPUs) or Address Space Layout Randomization
(ASLR), designed for dynamic loading, in systems
with MMUs. IoT OSes, therefore, provide no means
to isolate and protect different software components
from intrusion attempts. Malicious software com-
ponents may, for example, deliberately corrupt a
node’s memory to gain control on a device.

Remedying these issues is not at all trivial. Run-
time monitoring and mitigation mechanisms from
the OS research are unsuitable in the IoT’s radically
different application model (dynamic loading vs in-
tegrated firmware) and underlying hardware (with
limited memory management). What is required
is to devise mechanisms able to strike a balance
between the level of protection achieved and accom-
modating the resource constraints of IoT devices.
The ideal solution would bear minimal impact on de-
velopment process and run-time operation, but still
ensure a level of protection and ability to monitor
that is close to that of mainstream systems.
State of the Art For mainstream systems, the pre-
vention of software attacks at runtime is a mature
field, with established solutions such as address ob-
fuscation and ASLR, which were recently proposed
for embedded systems too [1]. These solutions,
however, require availability of a hardware MMU.
Other options have been conceptually proposed for
small embedded systems [18], such as link-time re-
ordering, stack shuffling, and system call diversifica-
tion. Still, to achieve a practical design, a number of
challenges remain to be addressed, such as adapt-
ing to custom threading models of IoT systems and
keeping the energy overhead acceptable.

In place of an MMU, a Memory Protection Unit
(MPU), which protects memory regions, may be
available in low-power microcontrollers. Current
IoT software, however, lacks MPU support, in
part because segregating the kernel from user
space proves challenging as a design afterthought.
FreeRTOS does provide basic MPU support, but

it is seldom used and poorly maintained, because
developing for an MPU is difficult [11].

Attacks against a network node may be detected
and countered using standard security components
such as anti-virus, firewalls and local and network
intrusion detection systems. Some IoT devices are
powerful enough to use standard desktop/server
software for this. In other cases the security soft-
ware must be adapted to a resource constrained en-
vironment. For example, IDS and firewall solutions
where designed for low-power IoT networks [26].
While this is a first step, more attacks have to be cov-
ered, potentially with distributed intelligence. Fur-
thermore, there is a need for detection of malicious
code in constrained devices, like the ones we con-
sider.

Task 3.1: Memory Isolation An important step
is to enable memory isolation, by means of com-
piler tools, OS mechanisms, and building on an
MPU and/or Trusted Execution Environments (TEE).
TEEs now equip low-power, MMU-less platforms
(e.g., ARM TrustZone on the Cortex-M23), and
provide hardware isolation of resources, including
memory and bus transactions, interrupts and pe-
ripherals. We will tackle the challenge of achieving
fine-grained, yet efficient protection. To this end,
we will devise tools that infer properties on memory
access patterns of different modules, and optimize
memory assignment to the MPU’s (sub-)regions.

To tackle the code base maintainability challenge
with MPUs [11], we will provide the developer with
means (e.g., through code annotations) to specify
constraints such as privileges, security and shar-
ing properties. We will incorporate TEE support in
our mechanisms, to handle a truly isolated trusted
kernel, and its connection to the untrusted world.

Task 3.2: Exploit Mitigation Building on our soft-
ware isolation solutions, we will explore mitigation
strategies for attacks such as buffer overflow, code
injection, and return-to-libc. In particular, we will
solve the challenge of achieving high entropy for
memory randomization [25], by reasoning at the
function or even sub-function level, rather than page
or library level. Such approaches are practical in
IoT OSes, where the code is considerably smaller
than in conventional OSes, and where firmwares
are integrated rather than dynamically loaded.

Address randomization could be done per-device,
which prevents attacks to be generalized, but still
does not protect single devices. We will therefore
also explore boot-time randomization, so that a
crashed device always reboots with a different mem-
ory layout. This will require solutions that preserve
high entropy while keeping the procedure embed-
dable. Finally, we will design complementary solu-
tions to achieve functionality such as stack shuffling,
boot-time tampering detection, and return address
protection, in constrained environments.
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Table 1: The three demonstrators of aSSIsT.
Contiki The Contiki OS will operate as a testbed for the memory protection and monitoring techniques of WP3. Such

techniques will be OS-agnostic on a conceptual level, fostering their general applicability independent of the
specific software platform. On the other hand, using Contiki as their demonstrator bears key advantages:
(i) as it is written in pure C, Contiki provides a quick path to a working implementation by avoiding the
idiosyncrasies of many IoT OSes that employ dialects of C, and (ii) because of its wide industry adoption, a
Contiki-specific implementation provides a stepping stone for a rapid industry uptake of the project’s results.

DTLS The Datagram Transport Layer Security protocol is derived from TLS that secures communication between
web browsers and servers. In contrast to TLS, DTLS runs over UDP rather than TCP and hence fits
resource-constrained devices. It is one of the most important higher layer security protocols in the IoT as it
is used by CoAP, the IoT’s web protocol. As TLS, DTLS provides integrity, authentication and confidentiality.

TSCH Time-Slotted Channel Hopping is a MAC-layer protocol that provides industrial-grade reliability (e.g.,
99.999% delivery) in IoT scenarios. TSCH has attracted the attention of major industry players including
ABB, Volvo Trucks, Linear Technologies, Toshiba, ST Microelectronics and NXP. In the industrial scenarios
where these companies plan to employ TSCH, security is of utmost importance.

Task 3.3: Control, Monitoring, and Analysis In
order to further protect against both network attacks
and malicious code, aSSIsT will design solutions
for control, monitoring, and analysis, with minimal
effect on performance and stability. An example
of a control component is IoT firewall technology
adaptable to the context of resource-constrained
devices and to new security situations. Thoroughly
monitoring the activities on devices and network
can be prohibitively expensive for constrained units.
With efficiency being the main challenge, we plan to
replace continuous scanning by trapping on excep-
tions (enabled by Task 3.1) whenever meaningfully
possible. The analysis of monitored data needs to
keep both communication and on-node computa-
tion costs low. We will therefore develop solutions
where local analysis on the device is combined with
off-loaded analysis, e.g., on the cloud, in a man-
ner that strikes optimal balance between analysis
power and message traffic and power consumption.

Demonstrators
We will showcase the results of the project through
the three demonstrators of Table 1.

Time Plan and Resources
Our research will be driven by the demonstrators
and their application and will be performed in close
collaboration with the original developers of IoT pro-
tocols available in Contiki and, whenever appro-
priate, on application code from companies of the
reference group. Table 2 contains a breakdown of
main actions during the duration of the project.
Available Resources Our demonstrators will make
use of the analysis tools and systems software de-
veloped by the project partners, in particular the
Contiki OS that stems from SICS and is now used
widely in both academia and industry. The DTLS
and TSCH implementations for the demonstrator
have been provided by SICS researchers (co-PI
Simon Duquennoy has implemented TSCH for Con-
tiki). In addition, we have infrastructures for test-

ing and benchmarking: both SICS and UU have
testbeds ranging from 25 to 50 sensor nodes. Tech-
niques for analysis and testing will in some parts
further develop software in partners’ widely-used
tools, including PropEr, Concuerror, and Nidhugg.

Requested Resources The proposed project bud-
get lists the required additional resources to carry
out the project plan, viz. resources for(i) 25% time
for each PI, (ii) 11 person years of PostDoc efforts,
and (iii) 4 Ph.D. students, all except one recruited
at project start at 80% effort during the project.

4 Consortium
The partners of the project are organized into two
groups: a Research Consortium, responsible for
carrying out the technical work, and a Reference
Group, which will review project progress, and help
identify spin-off activities.

Research Consortium
The Research Consortium brings together world-
leading key competencies for achieving the project
goals, in verification, testing, programming lan-
guage technology, wireless networking, embedded
operating systems, and security, hosted by Uppsala
University and SICS.

Uppsala University, Department of Information
Technology hosts research activities with a unique
breadth; covering areas that include wireless net-
working, embedded systems, verification, and pro-
gramming language technology. Involved groups
leads the UPMARC linnaeus centre of excellence,
and have recently led the SSF-funded projects
CoDeR-MP and ProFuN. The department hosts the
program office for the VINNOVA strategic innovation
program Internet of Things. The groups involved
in aSSIsT are:

• Verification group (Bengt Jonsson, Parosh Ab-
dulla, Mohammed Faouzi Atig, Philipp Rümmer,
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Table 2: Action plan for completing tasks during the duration of aSSIsT.
Year Actions (Tx.y denotes Task x.y)

1 Techniques for effective analysis of software on IoT devices (T1.1), demonstrated by application to Contiki’s
components. Design and initial prototype of tool for stateful targeted property-based testing (TPBT) (T2.1).
Design and initial implementation of memory isolation (T3.1) and on-device monitoring (T3.3) solutions.

2 Techniques for effective analysis of interrupts and event-driven programs (T1.2), applied to Contiki. Integration
of analysis with the ”emulate” platform for Contiki simulation. Application of TPBT tool to DTLS protocol (T2.1).
Design and initial prototype of a tool for systematic fuzzing (T2.2), of exploit mitigation solutions (T3.2) and
cloud-offloaded analysis (T3.3). Refined implementation and evaluation of the Y1 mechanisms of WP3.

3 Techniques for complete analysis of software components (T1.3). Integration of software analysis with protocol
implementation testing (T1.1&2.1). Evaluation of the tool for systematic fuzzing on IoT protocols DTLS
and TSCH (T2.2). Extension of memory isolation (T3.1), exploit mitigation and supervisor (T3.2) with TEE.
Evaluation of correctness and performance of Y2 mechanisms of WP3. Start of the integration with Contiki.

4 Development of a framework for compositional testing (T2.3) and application to complete verification of security
properties (T1.3&2.3) in components of Contiki. Iteration of the design and implementation of the Y1–Y3
mechanisms of WP3, based on the correctness and performance evaluations. Contiki integration continues.

5 Integration of software analysis, memory isolation, and protocol testing tools within a simulator. Final integration
and demonstration in Contiki. Completed evaluation on Contiki code base of correctness and performance.

Wang Yi) is world-renowned in the field of au-
tomated verification for among others, its con-
tributions to automated verification of infinite-
state and timed systems, including the UPPAAL
model checker, for its work on verification of mul-
tithreaded software software under different con-
currency memory models, and on techniques for
learning protocol models from tests. Members
received the CAV (Computer-Aided Verification)
Award, the most prestigious academic award in
the area, both in 2013 (Wang Yi) and in 2017
(Parosh Abdulla and Bengt Jonsson).

• Programming Language Technology group
(Kostis Sagonas, Dave Clarke, Tobias Wrigstad)
is known for work on design and implementa-
tion of high-level languages for concurrent pro-
gramming (Erlang and Encore), for type sys-
tems ensuring safety of memory accesses in
OO-languages, for the HiPE native code compiler
for Erlang and for various widely-used tools (Dia-
lyzer, TypEr, PropEr, Concuerror, CutEr) for static
analysis, testing, and stateless model checking
(SMC) of programs. Members have recently ap-
plied SMC to the code of RCU, a key component
of the Linux Kernel, discovered bugs that were
previously unknown in older kernels, and verified
the key correctness property of RCU in recent
kernels. They are currently working towards inte-
grating this work into the Linux test framework.

The groups have a strong track record of collabora-
tion, resulting in high-impact techniques and tools
for testing and verification of multithreaded software,
including Concuerror and Nidhugg.
RISE SICS is Sweden’s leading research institute
for applied ICT, founded in 1985. The research is
based on cutting-edge new technology with a time
horizon stretching beyond other companies’ own
R&D efforts. The groups involved in aSSIsT are

• Networked Embedded Systems group (Simon
Duquennoy, Luca Mottola, Thiemo Voigt) is
known for its strong track record in wireless sen-
sor networks, and its contribution of Contiki, to-
day’s leading open-source OS for constrained IoT
devices. The group has major contributions to
robust embedded systems and low-power com-
munication, and publishes regularly and receive
awards at the flagship conferences in the field,
ACM SenSys and IEEE/ACM IPSN. Among the
many awards of Luca Mottola is the ACM SigMo-
bile Research Highlight in 2016. Simon Duquen-
noy is active on formal verification in IoT software:
he was a co-applicant of the H2020 Vessedia
project that explores static analysis techniques
for IoT.

• Security Lab (Shahid Raza, Ludwig Seitz) is the
largest cybersecurity group in Sweden, with 19
members and two affiliates, begin experts in IoT
security, software security, formal methods, cryp-
tography, standardization, privacy (technical and
social aspects), cloud security and virtualization.
Shahid Raza has driven the security research
around the Contiki operating system. Currently,
the lab is involved in 15 research projects, funded
by H2020, VINNOVA, Eurostars, Celtic-Plus, EIT,
ARTEMIS, SSF, and Swedish industry.

The groups have a strong track record of collabora-
tion, e.g., producing Anquiro, a model checker for
sensor networks code. Furthermore, the Contiki
operating system and the simulation tools Cooja
and MSPSim stem from SICS. Uppsala and SICS
have previously led SSF-funded projects Promos
and ProFuN on software for wireless networks.

Reference Group
The reference group comprises key commercial ac-
tors with a core business in IoT system develop-
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ment. Partners are:
ASSA ABLOY is the global leader in door opening
solutions. ASSA ABLOY is developing embedded
software for a wide range of products and are inter-
ested in the developed solutions within this project
as it can improve software security. Contact: Tomas
Jonsson, +46 (0)708950666
Intel Sweden AB For Intel, IoT is a key business.
For Intel security for embedded devices is of utmost
importance. Intel supports the Zephyr OS and can
benefit from the work done in this project. Contact:
Björn Runåker, +46 (0)72 536 69 11.
LumenRadio AB provide wireless solutions tar-
geted for the most business critical applications
where reliability and security are key issues. They
build products on top of Contiki and have incor-
porated the Contiki simulator Cooja in their devel-
opment process. Hence, most of the developed
solutions within this project would be directly appli-
cable for them. Contact: Michael Karlsson, R&D
Manager, +46 (0)708 97 95 97.
Upwis develops low-power sensors and routers for
sensing applications. The project will benefit from
Kjell Brunberg’s huge network in Swedish industry.
Also, Upwis uses Contiki and hence can make direct
use of many of the developed solutions. Contact:
Kjell Brunnberg, +46 (0)73 3660707.
Yanzi has deployed the worlds largest automatically
provisioned IoT system for smart offices, with over
1000 sensors. Yanzi has strong collaborations with
large industrial players such as Intel, IBM and Mi-
crosoft. Like LumenRadio, they build products on
top of Contiki and most of the developed solutions
in aSSIsT would be directly applicable for them.
Contact: J. Eriksson, +46 (0)70 3213841.
The reference group will:(i) review and provide feed-
back on the project’s progress and planned work;
(ii) evaluate and test selected project outcomes;
(iii) ensure the relevance for current development
of IoT technologies and standards; (iv) help iden-
tify additional suitable partners for further collabo-
rations; (v) help identify suitable spin-off projects.
The research consortium and reference group will
meet twice a year in half-day seminars, featuring
presentations of project progress, relevant technol-
ogy development, and discussion of new activities.
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