Applying Symbolic Execution to
Test Implementations of a
Network Protocol Against its Specification

Hooman Asadian, Paul Fiterau-Brostean, Bengt Jonsson,
Konstantinos Sagonas

Introduction

» Testing correctness of network protocol implementations is essential

» A successful software testing technique is symbolic execution
— However, it is not so effective at testing stateful systems

This work:

* Presents a methodology that makes symbolic execution effective in

* Testing network protocol implementations, and
* Exposing requirement violations using assumptions and assertions

« Applies this methodology to implementations of the DTLS protocol
* Revealing numerous new security vulnerabilities and bugs in them

as
UPPSALA
UNIVERSITET

Methodology

1. Extract Specification Requirements
* Represent the requirements by logical formulas

2. Augment the SUT with assumptions and assertions
« Assume inputs under which a requirement can be violated
» Assert that no forbidden action is performed

3. Symbolic Execution
* Explores the pathsin the augmented SUT

4. Test Case Construction and Validation
e Confirm the bug on the unmodified SUT

as
UPPSALA
UNIVERSITET

1- Extract Specification Requirements

* Requirements from the protocol RFC are identified by particular
keywords:

« MUST, MUST NOT, SHOULD, SHOULD NOT,...

* Two types of requirements are extracted:
* Input validity requirements
* Input-output requirements

» Represent the requirements by logical formulas

as
UPPSALA
UNIVERSITET

Input Validity Requirements

* E.g., the DTLS 1.2 RFC states:

“For each received record, the receiver MUST verify that
the record contains a sequence number that does not
duplicate the sequence number of any other record
received during the life of this session.”

* For asetof Records R, received during a DTLS session:

Vr,r' €R: r #1r = r.sequence_number # r'.sequence_number

UNIVERSITET

2- Augment the SUT with Assumptions

Vr,r €R: r+1r = r.sequence_number + r'.sequence_number

R = { CH2,CKE,CCS}

Pair-wise conjunction

Negation

assume (! (CH2.sequence_number ! = CKE.sequence_number &
CH2.sequence_number ! =

= (C(CS.sequence_number &
CKE.sequence_number | = CCS.sequence_number))

je=N)
ey

UPPSALA
UNIVERSITET

2- Augment the SUT with Assertions

« Add an assert statement to check if the implementation of the
protocol uses invalid input in some forbidden way

- E.g.,the DTLS 1.2 RFC:

“Invalid records SHOULD be silently discarded ...”

» Check whether progress occurs after reception of invalid records
« Approximate this by successful completion of protocol interaction
« Add failing assertion

UPPSALA
UNIVERSITET

3- Symbolic Execution

* Exploring the paths in the augmented SUT looking for assertion
violation, crashes, memory errors, etc

* To achieve scalability:
* Only make symbolic the relevant fields in a requirement
» Other fields are given concrete values from a pre-captured session
* Check onerequirement at atime

 To ensure deterministic execution of the SUT:
 De-randomize the SUT

as
UPPSALA
UNIVERSITET

4- Test Case Construction and Validation

* For each path, the tool returns:
» Atuple of values for the symbolic fields

* For the sequence number experiment, we will have concrete values for
sequence_number in the participating records

* For concrete values that cause bugs:
« Assign concrete values to relevant fields
» Validate the bug by running the resulting test cases on the unmodified SUT

Sy
UPPSALA
UNIVERSITET

Implementation and Application to DTLS
» Used KLEE as the symbolic execution engine

» Built a test harness that:
« Capturestherecords a client and server exchange during a session
* |sused tosymbolically execute the SUT in order to check each requirement

 We implemented a shared library to facilitate test harness construction.
|t contains:
* Helper functions

 DTLS packet parser

* Functions to make specific fields of records symbolic and to form Boolean
expression in assumes and asserts

as
UPPSALA
UNIVERSITET

1 - Load the records
from files to DTLS
structured variable

DTLS Test Harness
CH2 CHO CKE
2- Make the relevant CCS FIN
fields in the records é -
symbolic .
Shared library

make_symbolic (CH2.sequence_number)

3 - Assume the negation mal;;e_syml;olll.c (gfgg.sequence_numlfer)

of the requirement make_symbolic (CCS.sequence_number)

assume (/(CH2.sequence_number | = CKE.sequence_number &

CH2.sequence_number | = CCS.sequence_number &

CKE.sequence_number | = CCS.sequence_number))

4 - Feed therecords to
the side we are testing

Server

assert(0)

UNIVERSITET

Evaluation

« Wetested 4 DTLS libraries against 16 requirements:
« 36 unique bugs
« 7 vulnerabilities of which 6 are new

OpenSSL Mbed TLS Tin*_i,flIZlTLS‘E TinyDTLSG
1.0.1f 3.0.0-alphal2 2.22.0 7068882 94205ff 53a0d97
| Vulnerability 1 1 _ 3 3 2]
Other — — — 3 4]
Non-conformance 2 2 3 9 10 10

UNIVERSITET

TinyDTLS Reassembly Bug

« The DTLS 1.2 RFC specifies:

“When a DTLS implementation receives a handshake message
fragment, it MUST buffer it until it has the entire message”

« Memory over-read when client/server reassemble a fragmented message
* Occurs if the fragment length field is greater than the size of the actual fragment

* Three pull request attempts before the bug was fixed

UNIVERSITET

KLEE Experiences

* Protocol implementations define incoming/outgoing buffers sizes with respect to
the Maximum Transmission Unit (MTU)

 Memory over-read/over-write bugs can be missed by KLEE
* Our solution: Allocate memory dynamically with respect to the size of the actual packets

 Significant interpretation slowdown when functions in cryptographic libraries
are executed

* Eveninthe absence of symbolic variables
* Provided a benchmark inissue #1255 (700% slowdown)
 (Partial) solution: Execute the functions as an external call

as
UPPSALA
UNIVERSITET

Conclusion

Methodology Evaluation

» We tested 4 DTLS libraries against 16 requirements:
1. Extract Specification Requirements « 36 unique bugs have been found

* Represent the requirements by formulas » 7 vulnerabilities of which 6 are new

2. Augment the SUT with assumptions and assertions

: : . . OpenSSL Mbed TLS ~ TinyDTLS” TinyDTLS®
¢ Assume inputs under which arequirement can be violated o e e I

¢ Assertthatno forbidden actionis performed 1.0.1f 3.0.0-alphal2 222.0 7068882 94205ff 53a0d97
Vulnerability I 1 = 33 |
i i Other = = = 3 4 1
3 SymbOhC Execution Non-conformance 2 2 3 9 10 10

¢ Exploresthe pathsin the augmented SUT

4. Test Case Construction and Validation
+ Confirmthe bug on the unmodified SUT

L UPPSALA
UNIVERSITET UNIVERSITET

Thank You for Listening

Replication materials available at: T
https://zenodo.org/record/5929867#.YKS3HS|MJaT ONNERSITET

https://zenodo.org/record/5929867#.YkS3HSjMJaT

