
So Many Fuzzers, So Little Time
Experience from Evaluating Fuzzers

on the Contiki-NG Network (Hay)Stack

Introduction

• Work done as part of the SSF aSSIsT project

–Goal: Investigate techniques to secure IoT software

–Case Study: Detect and correct bugs in the Contiki-NG OS

–Obvious Idea: Let’s use fuzz testing!

The ASE'2022 paper:

• Describes experiences from using a variety of fuzzers

–Over a period of more than three years

• Investigates trade-offs in state-of-the-art fuzzing techniques

–Mutation-based vs. hybrid fuzzers

– To use or not to use sanitizers when fuzzing?

Fuzz Testing the Contiki-NG
Network Stack

Open source OS for
resource-constrained

IoT devices

Open source OS for
resource-constrained

IoT devices

Initial Fuzzing Attempt Using AFL
(ca mid 2018)

All these
“unique” crashes

correspond to
only one bug!

All these
“unique” crashes

correspond to
only one bug!

Some (Quick) Lessons Learned

The number of “unique” crashes is not a
good measure of a fuzzer's efficacy.

It's the number of fixes that matters!

Suggestion:

One should stop a fuzzer soon after it has
come up with the first few “unique” crashes,
fix the root of the problem, and re-test.

AFL: American Fuzzy Lop (afl-fuzz)
Coverage-based fuzzer with a genetic algorithm.

afl-clang-fast
AFL supported by Clang-based instrumentation.

Honggfuzz [Google]

Supports evolutionary, feedback-driven fuzzing.
Mopt-AFL [USENIX Security 19]

Guides AFL to select mutations based on a particle
swarm optimization algorithm.

Mutation-based Fuzzers Used

Fuzzing vs. Symbolic Execution

• Mutation-based fuzzing:

+ Explores the program at nearly native speed

- Unable to exercise “difficult”/“interesting” paths

• Symbolic/concolic execution:

+ Effective at producing inputs that explore paths
guarded by complex conditions

- Significant run-time overhead

Obvious Idea: Combine these techniques!

Hybrid Fuzzing

• Combine fuzzing with symbolic execution to
– Increase code coverage

– Find more bugs

• Hybrid fuzzers:
– Use the mutation-based component as long as

possible

– Keep track of the coverage achieved

– When coverage stops increasing, call the symbolic
execution engine to provide inputs that (hopefully)
exercise some new path

Mutation-based Fuzzers
AFL (AFL-gcc)
AFL-clang-fast (AFL-cf)
Honggfuzz
MOpt-AFL (MOpt)

Fuzzing Tools Used

Hybrid Fuzzers
Angora [S&P'19]

QSYM [USENIX SECURITY 18]

Intriguer [CCS'19]

SymCC [USENIX SECURITY 20]

Vulnerabilities in Contiki-NG
Most of the bugs

have CVEs

increased
difficulty

PR fixing
the bug

Commits before
and after the fix

Research Questions

• RQ.1 (Effectiveness) Are hybrid fuzzers
superior in exposing vulnerabilities and
bugs than mutation-based fuzzers?

• RQ.2 (Efficiency) Do some fuzzers employ
techniques that allow them to expose bugs
fast(er)? If so, which?

• RQ.3 (Consistency) Are there any fuzzer
implementations that are able to expose
(some of) the bugs in all/most of their runs?

“Ground Truth” Results
Run focused
experiments
looking for a

particular bug Some bugs
are easy

Other bugs
are challenging

“Ground Truth” Results

Answers to RQ.1 – RQ.3

• Did not detect any clear superiority of hybrid
fuzzers wrt ability to expose bugs compared to
mutation-based fuzzers (RQ.1).

• No fuzzer is uniformly superior to all others.

• Three fuzzers (MOpt, SymCC, and QSYM) stand
out in terms of ability to expose bugs fast (RQ.2)
and in doing so more consistently (RQ.3).

• The consistency and effectiveness of a hybrid
fuzzer is dependent on the consistency and
effectiveness of its mutation-based component.

“Bonus” Research Question

Quite often, fuzzers are aided by sanitizers.

A sanitizer:

 + Exposes and triages bugs more accurately.

 – Imposes a non-negligible time overhead (12x).

Few published works investigate this trade-off.

• RQ.4 (Sanitizer Impact) Do sanitizers pay
off for their runtime overhead in terms of
exposing more vulnerabilities within a time-
limited fuzzing run?

Impact of AddressSanitizer (ASan)
Faster detection

Bug detected
fewer times
or slower

Bugs detected
one more time

[Google]

Impact of AddressSanitizer (ASan)
[Google]

Impact of Effective Type Sanitizer
[PLDI'18]

Answer(s) to RQ.4

Sanitizers:

• Make detection of “easy to expose” bugs slower.

• Make fuzzers more consistent in detecting bugs.

• Are crucial for detection of “difficult to expose”
bugs and vulnerabilities.

Overall, we find that sanitizers pay off for their
(non-negligible) overhead when the “easy” bugs
have been fixed.

Read the Paper for

 More tables and experiments.
 More lessons learned.
 More suggestions on how to compare fuzzers.
 Related work.

– Other suites for benchmarking fuzzers.

– Comparison with results reported in “similar”
papers (using different sets of fuzzers).

 Information about the paper's artifact.
https://github.com/assist-project/so-many-fuzzers-artifact

In Summary

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

